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Let R be a commutative ring with 1 6= 0 and n a positive integer. In this article,

we study two generalizations of a prime ideal. A proper ideal I of R is called

an n-absorbing (resp., strongly n-absorbing) ideal if whenever x1 · · · xn+1 ∈ I for

x11 0 0 0 1 xn+1 ∈ R (resp., I1 · · · In+1 ⊆ I for ideals I11 0 0 0 1 In+1 of R), then there are n

of the xi’s (resp., n of the Ii’s) whose product is in I . We investigate n-absorbing and

strongly n-absorbing ideals, and we conjecture that these two concepts are equivalent.

In particular, we study the stability of n-absorbing ideals with respect to various ring-

theoretic constructions and study n-absorbing ideals in several classes of commutative

rings. For example, in a Noetherian ring every proper ideal is an n-absorbing ideal for

some positive integer n, and in a Prüfer domain, an ideal is an n-absorbing ideal for

some positive integer n if and only if it is a product of prime ideals.
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1. INTRODUCTION

In this article, we study n-absorbing ideals in commutative rings with identity,
which are a generalization of prime ideals. The concept of 2-absorbing ideals was
introduced and investigated in [3]. Let n be a positive integer. A proper ideal I of
a commutative ring R is called an n-absorbing ideal if whenever x1 · · · xn+1 ∈ I for
x11 0 0 0 1 xn+1 ∈ R, then there are n of the xi’s whose product is in I . Equivalently,
a proper ideal I of R is an n-absorbing ideal if and only if whenever x1 · · · xm ∈ I

for x11 0 0 0 1 xm ∈ R with m > n, then there are n of the xi’s whose product is in I .
In terms of factor rings, I is an n-absorbing ideal of R if and only if whenever
the product of n+ 1 elements of R/I is 0, then the product of some n of these
elements is 0 in R/I . Thus a 1-absorbing ideal is just a prime ideal. More generally,
we show that the intersection of n prime ideals, the product of n maximal ideals,
the nth symbolic power of a prime ideal, the product of n principal prime ideals
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1647

in an integral domain, and (divisorial) ideals which are the v-product of n height-
one prime ideals in a Krull domain are all n-absorbing ideals. For principal ideals
in an integral domain, this concept has been studied with respect to nonunique
factorization in [2]. Other generalizations of prime ideals have recently been studied
in [1].

In Section 2, we give some basic properties of n-absorbing ideals. For
example, we show that an n-absorbing ideal has at most n minimal prime ideals
(Theorem 2.5), that the product of n maximal ideals is an n-absorbing ideal
(Theorem 2.9), and that if an n-absorbing ideal I has exactly n minimal prime ideals
P11 0 0 0 1 Pn, then P1 · · ·Pn ⊆ I (Theorem 2.14). However, the product of n prime
ideals need not be an n-absorbing ideal (Example 2.7). Section 3 continues the study
of basic properties of n-absorbing ideals. In particular, we discuss the relationship
between primary ideals and n-absorbing ideals and investigate when 4I 2R x5 is an
n-absorbing ideal of R for I a proper ideal of R.

In Section 4, we study the stability of n-absorbing ideals with respect
to various ring-theoretic constructions such as localization, factor rings, and
idealization. In particular, we determine the n-absorbing ideals in the direct product
of a finite number of rings (Corollary 4.8) and in integral domains of the form
D + XK66X77, where D is a subring of a field K (Theorem 4.17). In Section 5, we
study n-absorbing ideals in several classes of commutative rings. For example, we
show that every proper ideal of a Noetherian ring is an n-absorbing ideal for some
positive integer n (Theorem 5.3) and that an ideal I of a valuation domain R is an
n-absorbing ideal of R if and only if I = Pm, where P = Rad4I5 is a prime ideal of
R and 1 ≤ m ≤ n (Theorem 5.5). More generally, an ideal of a Prüfer domain is an
n-absorbing ideal for some positive integer n if and only if it is a product of prime
ideals (Theorem 5.7). We also discuss for which positive integers n, a ring R has an
ideal which is n-absorbing, but not 4n− 15-absorbing.

In the final section, we study another generalization of prime ideal. We define
a proper ideal I of a ring R to be a strongly n-absorbing ideal if whenever I1 · · · In+1 ⊆
I for ideals I11 0 0 0 1 In+1 of R, then the product of some n of the Ij’s is contained
in I . Thus a strongly 1-absorbing ideal is just a prime ideal. Clearly a strongly n-
absorbing ideal of R is also an n-absorbing ideal of R, and we conjecture that these
two concepts are equivalent (we show they are equivalent for Prüfer domains in
Corollary 6.9). We also give several results relating strongly n-absorbing ideals to
earlier material. For example, we show that if I is a strongly n-absorbing ideal with
m4≤ n5 minimal prime ideals P11 0 0 0 1 Pm, then P1

n1 · · ·Pm
nm ⊆ I for positive integers

n11 0 0 0 1 nm with n = n1 + · · · + nm (Theorem 6.2), that the product of n maximal
ideals is a strongly n-absorbing ideal (Corollary 6.7), and that every proper ideal
of a Noetherian ring is a strongly n-absorbing ideal for some positive integer n
(Corollary 6.8).

As mentioned above, the concept of 2-absorbing ideals was introduced and
studied in [3]. In some cases, results about 2-absorbing ideals generalize in the
natural way to n-absorbing ideals for n ≥ 3; in other cases they do not (see
Example 4.11(c) for instance). And in a few cases, we have been unable to determine
if results extend or not (see Theorem 4.15 and Section 6).

We assume throughout that all rings are commutative with 1 6= 0 and that
f415 = 1 for all ring homomorphisms f 2 R −→ T . Let R be a ring. Then dim4R5
denotes the Krull dimension of R, Spec4R5 denotes the set of prime ideals of R,
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1648 ANDERSON AND BADAWI

Max4R5 denotes the set of maximal ideals of R, T4R5 denotes the total quotient ring
of R, qf4R5 denotes the quotient field of R when R is an integral domain, Nil4R5
denotes the ideal of nilpotent elements of R, and Z4R5 denotes the set of zero-
divisors of R. If I is a proper ideal of R, then Rad4I5 and MinR4I5 denote the radical
ideal of I and the set of prime ideals of R minimal over I , respectively. We will often
let 0 denote the zero ideal.

We start by recalling some background material. A prime ideal P of a ring R

is said to be a divided prime ideal if P ⊂ xR for every x ∈ R\P; thus a divided prime
ideal is comparable to every ideal of R. An integral domain R is said to be a divided

domain if every prime ideal of R is a divided prime ideal.
An integral domain R is said to be a valuation domain if either x � y or y � x (in

R) for all 0 6= x1 y ∈ R (a valuation domain is a divided domain). If I is a nonzero
fractional ideal of a ring R, then I−1 = 8x ∈ T4R5 � xI ⊆ R9. An integral domain R

is called a Dedekind (resp., Prüfer) domain if II−1 = R for every nonzero fractional
ideal (resp., finitely generated fractional ideal) I of R. Moreover, an integral domain
R is a Prüfer domain if and only if RM is a valuation domain for every maximal
ideal M of R. An integral domain R is called an almost Dedekind domain if RM is a
Noetherian valuation domain (DVR) for every maximal ideal M of R. An almost
Dedekind domain is a Prüfer domain with dim4R5 ≤ 1. A ring R is a Bézout ring

if every finitely generated ideal of R is principal. As usual, for a nonzero fractional
ideal I of an integral domain R, we define Iv = 4I−15−1 and say that I is divisorial

(or a v-ideal) if Iv = I .
Several of our examples use the R4+5M construction. Let R be a ring

and M an R-module. Then R4+5M = R×M is a ring with identity 411 05 under
addition defined by 4r1m5+ 4s1 n5 = 4r + s1m+ n5 and multiplication defined by
4r1m54s1 n5 = 4rs1 rn+ sm5. Note that 404+5M52 = 0; so 04+5M ⊆ Nil4R4+5M5. We
view R as a subring of R4+5M via r 7→ 4r1 05.

As usual, î, ú, ún, ñ, and ò will denote the positive integers, integers,
integers modulo n, rational numbers, and real numbers, respectively. We define n+

� = �+� = � for all n ∈ ú. We will use “⊂” to denote proper inclusion. For any
undefined concepts or terminology, see [6, 8, 9], or [10].

2. BASIC PROPERTIES OF n-ABSORBING IDEALS

Let n be a positive integer. Recall that a proper ideal I of a ring R is an n-
absorbing ideal of R if whenever x1 · · · xn+1 ∈ I for x11 0 0 0 1 xn+1 ∈ R, then there are
n of the xi’s whose product is in I . In this section, we give some basic properties of
n-absorbing ideals. We start with several elementary results.

Theorem 2.1. Let R be a ring, and let m and n be positive integers.

(a) A proper ideal I of R is an n-absorbing ideal if and only if whenever x1 · · · xm ∈ I

for x11 0 0 0 1 xm ∈ R with m > n, then there are n of the xi’s whose product is in I .

(b) If I is an n-absorbing ideal of R, then I is an m-absorbing ideal of R for all m ≥ n.

(c) If Ij is an nj-absorbing ideal of R for each 1 ≤ j ≤ m, then I1 ∩ · · · ∩ Im is an n-

absorbing ideal of R for n = n1 + · · · + nm. In particular, if P11 0 0 0 1 Pn are prime

ideals of R, then P1 ∩ · · · ∩ Pn is an n-absorbing ideal of R.
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1649

(d) If p11 0 0 0 1 pn are prime elements of an integral domain R, then I = p1 · · ·pnR is an

n-absorbing ideal of R.

(e) If I is an n-absorbing ideal of R, then Rad4I5 is an n-absorbing ideal of R and

xn ∈ I for all x ∈ Rad4I5.

Proof. The proofs of (a), (b), (c), and (d) are all routine, and thus they are omitted.

(e) Let I be an n-absorbing ideal of R. Hence xn ∈ I for all x ∈ Rad4I5. Let
x1 · · · xn+1 ∈ Rad4I5 for x11 0 0 0 1 xn+1 ∈ R. Then xn1 · · · x

n
n+1 = 4x1 · · · xn+15

n ∈ I . Since
I is an n-absorbing ideal, we may assume that xn1 · · · x

n
n ∈ I . Thus 4x1 · · · xn5

n =

xn1 · · · x
n
n ∈ I , and hence x1 · · · xn ∈ Rad4I5. Thus Rad4I5 is an n-absorbing ideal of R.

�

Let I be a proper ideal of a ring R. In Theorem 2.1(b), we observed that
an n-absorbing ideal is also an m-absorbing ideal for all integers m ≥ n. If I is
an n-absorbing ideal of R for some positive integer n, then define �R4I5 = min8n �

I is an n-absorbing ideal of R9; otherwise, set �R4I5 = � (we will just write �4I5

when the context is clear). It is convenient to define �4R5 = 0. Thus for any ideal
I of R, we have �4I5 ∈ î ∪ 801�9 with �4I5 = 1 if and only if I is a prime ideal
of R and �4I5 = 0 if and only if I = R. So �4I5 measures, in some sense, how far I
is from being a prime ideal of R. When R is an integral domain and 0 6= x ∈ R, we
have �4xR5 = �4x5 as defined in [2, 7].

Remark 2.2. Several of the results in Theorem 2.1 may be recast using the �

function. For example, Theorem 2.1(c) becomes �4I1 ∩ · · · ∩ Im5 ≤ �4I15+ · · · +

�4Im5. In particular, �4P1 ∩ · · · ∩ Pn5 ≤ n when P11 0 0 0 1 Pn are prime ideals of R.
Easy examples show that both inequalities may be strict. However, if P11 0 0 0 1 Pn are
incomparable prime ideals of R, then �4P1 ∩ · · · ∩ Pn5 = n. (Choose xi ∈ Pi\

⋃
j 6=i Pj

for each 1 ≤ i ≤ n. Then x1 · · · xn ∈ P1 ∩ · · · ∩ Pn, but no proper subproduct of
the xi’s is in P1 ∩ · · · ∩ Pn. Thus �4P1 ∩ · · · ∩ Pn5 ≥ n.) Theorem 2.1(d) becomes
�4p1 · · ·pnR5 = n, where p11 0 0 0 1 pn are prime elements of an integral domain R.
More generally, �4x1 · · · xnR5 ≥ n for any nonzero, nonunits xi in an integral
domain R. Also, Theorem 2.1(e) may be restated as �4Rad4I55 ≤ �4I5. Again, easy
examples show that both inequalities may be strict.

We next give a very elementary example of a ring with proper ideals which are
not n-absorbing for any positive integer n. For other examples, see Examples 4.12,
4.18, and 5.6.

Example 2.3. Let R =
∏�

i=1 ú2. Then R is a von Neumann regular ring (i.e.,
R is reduced with dim4R5 = 0). Let In = 84xi5 ∈ R � xi = 0 for 1 ≤ i ≤ n9 for each
positive integer n, and let I = 84xi5 ∈ R � x2i−1 = 0 for all i ∈ î9. Then it is easily
verified that In and I are proper ideals of R with �4In5 = n for each positive integer
n and �4I5 = �. Note that each In is the product of n maximal ideals of R. It is also
easily verified that �405 = �.

The first major result of this section (Theorem 2.5) is that an n-absorbing ideal
has at most n minimal prime ideals. We will need the following lemma.
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1650 ANDERSON AND BADAWI

Lemma 2.4 ([9, Theorem 2.1, p. 2]). Let I ⊆ P be ideals of a ring R with P a prime

ideal. Then the following statements are equivalent:

(1) P is a minimal prime ideal of I;

(2) For each x ∈ P, there is a y ∈ R\P and a positive integer n such that yxn ∈ I .

Theorem 2.5. Let I be an n-absorbing ideal of a ring R. Then there are at most n

prime ideals of R minimal over I . Moreover, �MinR4I5� ≤ �R4I5.

Proof. We may assume that n ≥ 2 since a 1-absorbing ideal is a prime ideal.
Suppose that P11 0 0 0 1 Pn+1 are distinct prime ideals of R minimal over I . Thus for
each 1 ≤ i ≤ n, there is an xi ∈ Pi\44

⋃
k 6=i Pk5 ∪ Pn+15. By Lemma 2.4, for each 1 ≤

i ≤ n, there is a ci ∈ R\Pi such that cix
ni
i ∈ I for some integer ni ≥ 1. Since I ⊆ Pn+1

is an n-absorbing ideal of R and xi 6∈ Pn+1 for each 1 ≤ i ≤ n, we have cix
n−1
i ∈ I

for each 1 ≤ i ≤ n, and hence 4c1 + · · · + cn5x
n−1
1 · · · xn−1

n ∈ I . Since xi ∈ Pi\4
⋃

k 6=i Pk5

and cix
n−1
i ∈ I ⊆ P1 ∩ · · · ∩ Pn for each 1 ≤ i ≤ n, we have ci ∈ 4

⋂
k 6=i Pk5\Pi for

each 1 ≤ i ≤ n, and thus c1 + · · · + cn 6∈ Pi for each 1 ≤ i ≤ n. Hence 4c1 + · · · +

cn5
∏

k 6=i x
n−1
k 6∈ Pi for each 1 ≤ i ≤ n; so 4c1 + · · · + cn5

∏
k 6=i x

n−1
k 6∈ I for each 1 ≤ i ≤

n, and thus xn−1
1 · · · xn−1

n ∈ I ⊆ Pn+1 since I is an n-absorbing ideal of R. But then
xi ∈ Pn+1 for some 1 ≤ i ≤ n, which is a contradiction. Hence there are at most n
prime ideals of R minimal over I .

The “moreover” statement is clear. �

Let n ≥ m be positive integers. Then there is an n-absorbing, but not 4n− 15-
absorbing, ideal of a ring R that has exactly m minimal prime ideals. For example,
let n = 3. Then the ideals I1 = 27ú, I2 = 18ú, and I3 = 30ú are 3-absorbing, but not
2-absorbing, ideals of ú with one, two, and three minimal prime ideals, respectively.
More generally, let p11 0 0 0 1 pm ∈ ú be distinct positive primes and n11 0 0 0 1 nm be
positive integers with n = n1 + · · · + nm. Then I = p

n1
1 · · ·pnm

m ú is an n-absorbing,
but not 4n− 15-absorbing, ideal of ú with exactly m minimal prime ideals, namely,
p1ú1 0 0 0 1 pmú, i.e., �Minú4I5� = m and �ú4I5 = n (cf. Theorems 2.1(d) and 2.9).

We have observed in Theorem 2.1(c) that the intersection of n prime ideals
of a ring R is always an n-absorbing ideal of R. We next investigate when the
product of n prime ideals of R is an n-absorbing ideal of R. Note that if P11 0 0 0 1 Pn

are incomparable prime ideals of R, then �4P1 · · ·Pn5 ≥ n. (Let xi ∈ Pi\4
⋃

j 6=i Pj5 for
each 1 ≤ i ≤ n. Then x1 · · · xn ∈ P1 · · ·Pn, but no proper subproduct of the xi’s is in
P1 · · ·Pn.) Also, the proof of Lemma 2.8 shows that �4Pn5 ≥ n for P a prime ideal
of R with Pn+1 ⊂ Pn (cf. Theorem 6.3). It has already been noted in Theorem 2.1(d)
that the product of n nonzero principal prime ideals in an integral domain R is
an n-absorbing ideal of R. The next theorem gives another trivial case where the
product of n prime ideals of R is an n-absorbing ideal of R (see Corollary 4.9 for a
generalization).

Theorem 2.6. Let P11 0 0 0 1 Pn be prime ideals of a ring R that are pairwise

comaximal. Then I = P1 · · ·Pn is an n-absorbing ideal of R. Moreover, �4I5 = n.

Proof. Since the Pi’s are pairwise comaximal, we have I = P1 · · ·Pn = P1 ∩ · · · ∩

Pn. Thus I is an n-absorbing ideal of R by Theorem 2.1(c).
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1651

The “moreover” statement follows from comments in Remark 2.2 since
P11 0 0 0 1 Pn are incomparable. �

In general, the product of n ≥ 2 prime ideals of a ring R need not be an n-
absorbing ideal of R. We have the following examples. However, see Corollary 4.4.

Example 2.7. (a) Let R = ú6X1 Y7+ 6Zú6X1 Y1 Z7 ⊂ ú6X1 Y1 Z7. Then P1 =

Xú6X1 Y7+ 6Zú6X1 Y1 Z7 and P2 = Yú6X1 Y7+ 6Zú6X1 Y1 Z7 are incomparable prime
ideals of R. However, I = P1P2 is not a 2-absorbing ideal of R since 2 · 3 · 6Z2 ∈ I ,
but 2 · 3 6∈ I , 2 · 6Z2 6∈ I , and 3 · 6Z2 6∈ I . Similarly, P2

1 and P2
2 are not 2-absorbing

ideals of R.

(b) Let R = ú6X1 Y1 Z7. Then P1 = 421 X51 P2 = 421 Y5, and P3 = 421 Z5
are incomparable (nonmaximal) prime ideals of R. However, I = P1P2P3 =

481 4X1 4Y1 4Z1 2XY1 2XZ1 2YZ1XYZ5 is not a 3-absorbing ideal of R. To see this, let
f1 = 21 f2 = X + Y + 21 f3 = X + Z + 2, and f4 = Y + Z + 2. Then f1f2f3f4 ∈ I , but
no product of any 3 of the fi’s is in I. (Note that every ideal of R is an n-absorbing
ideal for some positive integer n by Theorem 5.3.)

(c) We next generalize part (a). Let m and n be integers with 2 ≤ n ≤

m, and let p11 0 0 0 1 pm ∈ ú be the first m positive primes. For qm = p1 · · ·pm, let
R = ú6X11 0 0 0 1 Xn7+ qmYú6X11 0 0 0 1 Xn1 Y7, a subring of ú6X11 0 0 0 1 Xn1 Y7, and let
Pi = Xiú6X11 0 0 0 1 Xn7+ qmYú6X11 0 0 0 1 Xn1 Y7 for each 1 ≤ i ≤ n. Then P11 0 0 0 1 Pn are
incomparable prime ideals of R. However, I = P1 · · ·Pn is not an m-absorbing ideal
of R (and hence I is also not an n-absorbing ideal of R). To see this, let q∗

m = qn−1
m Y n.

Then p1 · · ·pmq
∗
m = 4qmY5

n ∈ I , but no proper subproduct is in I . Similarly, let J =

P
n1
1 · · ·Pnn

n for integers nk ≥ 0 with n = n1 + · · · + nn; then J is not an m-absorbing
ideal of R.

(d) More generally, one can ask how �4IJ51 �4I5, and �4J5 compare when
I and J are proper ideals of a ring R. If I and J are comaximal, then �4IJ5 =
�4I5+ �4J5 by Corollary 4.9. However, the two examples above show that we may
have �4IJ5 > �4I5+ �4J5 even when I and J are prime ideals of R. We may also
have �4IJ5 < �4I5+ �4J5. This is trivially true if I = J is an idempotent prime ideal
of R. For a less trivial example, let P ⊂ Q be nonzero prime ideals of a valuation
domain R. Then it is easy to verify that PQ = P, and thus �4PQ5 = 1 < 2 = �4P5+

�4Q5. We have already observed that for incomparable prime ideals P and Q of
R, we have �4PQ5 ≥ 2 = �4P5+ �4Q5. Also, for any integral domain R, we have
�4xyR5 ≤ �4xR5+ �4yR5 for all 0 6= x1 y ∈ R by [2, Theorem 2.3].

If M11 0 0 0 1Mn are distinct maximal ideals of a ring R, then I = M1 · · ·Mn is an
n-absorbing ideal of R by Theorem 2.6. We next show that the product of any n
maximal ideals of R is an n-absorbing ideal of R, but first we show that Mn is an
n-absorbing ideal of R for any maximal ideal M of R (cf. Theorem 3.1). Note that
we may have �4Mn5 < n. For example, this would happen if Mk = Mk+1 for some
integer k with 1 ≤ k ≤ n− 1 (cf. Remark 6.4(a)).

Lemma 2.8. Let M be a maximal ideal of a ring R and n a positive integer. Then Mn

is an n-absorbing ideal of R. Moreover, �4Mn5 ≤ n, and �4Mn5 = n if Mn+1 ⊂ Mn.
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1652 ANDERSON AND BADAWI

Proof. Let x1 · · · xn+1 ∈ Mn for x11 0 0 0 1 xn+1 ∈ R. If x11 0 0 0 1 xn+1 ∈ M , then we are
done; so we may assume that xn+1 6∈ M . Then 4Mn1 xn+15 = R; so y + xn+1z = 1 for
some y ∈ Mn and z ∈ R. Thus x1 · · · xn = 4x1 · · · xn51 = 4x1 · · · xn5y + 4x1 · · · xn+15z ∈
Mn, and hence Mn is an n-absorbing ideal of R.

The first part of the “moreover” statement is clear. Now suppose that Mn+1 ⊂

Mn. Then there are x11 0 0 0 1 xn ∈ M such that x1 · · · xn ∈ Mn\Mn+1. Thus no product
of n− 1 of the xi’s is in Mn since otherwise x1 · · · xn ∈ Mn+1, a contradiction. Hence
Mn is not an 4n− 15-absorbing ideal of R, and thus �4Mn5 = n since we showed
above that Mn is an n-absorbing ideal of R. �

Theorem 2.9. Let M11 0 0 0 1Mn be maximal ideals of a ring R. Then I = M1 · · ·Mn is

an n-absorbing ideal of R. Moreover, �4I5 ≤ n.

Proof. We show that if M11 0 0 0 1Mm are distinct maximal ideals of R and n11 0 0 0 1 nm

are positive integers with n = n1 + · · · + nm, then I = M
n1
1 · · ·Mnm

m is an n-absorbing
ideal of R. By Lemma 2.8, each M

ni
i is a ni-absorbing ideal of R. Thus I =

M
n1
1 · · ·Mnm

m = M
n1
1 ∩ · · · ∩Mnm

m is an n-absorbing ideal of R by Theorem 2.1(c).
The “moreover” statement is clear. �

Our next goal (Theorem 2.14) is to show that if an n-absorbing ideal I has
exactly n minimal prime ideals, say P11 0 0 0 1 Pn, then P1 · · ·Pn ⊆ I 4⊆ P1 ∩ · · · ∩ Pn5.
Note that an n-absorbing ideal I of R has exactly n minimal prime ideals if and only
if �MinR4I5� = �R4I5 = n by Theorem 2.5. First an example and two lemmas.

Example 2.10. Let P11 0 0 0 1 Pn be incomparable prime ideals of a ring R, and
let I = P1 ∩ · · · ∩ Pn. Then Rad4I5 = I1 �4I5 = n, and P1 · · ·Pn ⊆ I = P1 ∩ · · · ∩ Pn.
However, the inclusion may be strict. For example, let R = ú6X1 Y71 P1 = 421 X5, and
P2 = 421 Y5. Then 441 2X1 2Y1XY5 = P1P2 ⊂ I = P1 ∩ P2 since 2 ∈ I\P1P2.

Lemma 2.11. Let n ≥ 2 and P11 0 0 0 1 Pn be incomparable primes ideals of a ring R,
and let I be an n-absorbing ideal of R contained in P1 ∩ · · · ∩ Pn. If x

m1

1 · · · xmn
n ∈ I for

positive integers mi and xi ∈ Pi\4
⋃

k 6=i Pk5, then x1 · · · xn ∈ I .

Proof. Since I is an n-absorbing ideal of R, we have x
k1
1 · · · xknn ∈ I for integers

k11 0 0 0 1 kn with each 0 ≤ ki ≤ mi and k1 + · · · + kn = n. If some ki = 0, say k1 =
0, then x

k2
2 · · · xknn ∈ I ⊆ P1, a contradiction since xi 6∈ P1 for each 2 ≤ i ≤ n. Thus

x1 · · · xn ∈ I . �

In the following results, we use the notation Pj

∏
i 6=j ci to represent the set of

all products of the form a
∏

i 6=j ci, where a ∈ Pj .

Lemma 2.12. Let n ≥ 2 and I be an n-absorbing ideal of a ring R such that I has

exactly n minimal prime ideals, say P11 0 0 0 1 Pn. Let 1 ≤ j ≤ n, and for every i 6= j with

1 ≤ i ≤ n, let ci ∈ Pi\4
⋃

k 6=i Pk5. Then Pj

∏
i 6=j ci ∈ I .

Proof. Let a ∈ Pj . If a ∈ Pj\4
⋃

i 6=j Pi5, then a
∏

i 6=j ci ∈ I by Theorem 2.1(e) and
Lemma 2.11. Now suppose that a ∈ Pj ∩ 4

⋃
i 6=j Pi5. Let d ∈ Pj\4

⋃
i 6=j Pi5. We will

find an element b ∈ R such that bd + a ∈ Pj\4
⋃

i 6=j Pi5. Let F = 8m � a 6∈ Pm for
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1653

1 ≤ m ≤ n9, D = 8m � a ∈ Pm for 1 ≤ m ≤ n1m 6= j9, b =
∏

k∈F ck (let b = 1 if F =

∅), and x = bd + a. Since d
∏

k∈F ck ∈ Pm and a 6∈ Pm for every m ∈ F , we have x 6∈

Pm for every m ∈ F . Since a ∈ Pm for every m ∈ D and d
∏

k∈F ck 6∈ Pm for every m ∈

D, we have x 6∈ Pm for every m ∈ D. Thus x ∈ Pj\4
⋃

i 6=j Pi5, and hence x
∏

i 6=j ci ∈ I

and d
∏

i 6=j ci ∈ I as above. Thus 4
∏

k∈F ck54d
∏

i 6=j ci5+ a
∏

i 6=j ci = x
∏

i 6=j ci ∈ I , and
hence a

∏
i 6=j ci ∈ I . Thus Pj

∏
i 6=j ci ∈ I . �

In view of the proof of Lemma 2.12, we have the following corollary.

Corollary 2.13. Let n ≥ 2 and P11 0 0 0 1 Pn be incomparable prime ideals of a ring R.

Let a ∈ Pj for some 1 ≤ j ≤ n. Then there is an element d ∈ Pj\4
⋃

i 6=j Pi5 and b ∈ R

such that bd + a ∈ Pj\4
⋃

i 6=j Pi5.

We are now ready for the main result of this section. Example 2.10 shows that
the inclusion in Theorem 2.14 may be proper, while Corollary 2.15 gives several
cases where equality holds.

Theorem 2.14. Let I be an n-absorbing ideal of a ring R such that I has exactly n

minimal prime ideals, say P11 0 0 0 1 Pn. Then P1 · · ·Pn ⊆ I . Moreover, �4I5 = n.

Proof. We may assume that n ≥ 2 since a 1-absorbing ideal is a prime ideal.
Let ai ∈ Pi for each 1 ≤ i ≤ n. Then a1

∏
2≤i≤n ci ∈ I for any choices ci ∈ Pi\4P1∪

4
⋃

j 6=i Pj55, 2 ≤ i ≤ n, by Lemma 2.12. Now suppose that for some 1 ≤ k ≤

n− 1, we have that 4a1 · · · ak5
∏

4k+15≤i≤n ci ∈ I for any choices ci ∈ Pi\4P1 ∪

4
⋃

j 6=i Pj55, k+ 1 ≤ i ≤ n; we will show that 4a1 · · · ak+15
∏

4k+25≤i≤n ci ∈ I for any
choices ci ∈ Pi\4P1 ∪ 4

⋃
j 6=i Pj55, k+ 2 ≤ i ≤ n. By Corollary 2.13, there is a dk+1 ∈

Pk+1\4
⋃

j 6=k+1 Pj5 and bk+1 ∈ R such that bk+1dk+1 + ak+1 ∈ Pk+1\4
⋃

j 6=k+1 Pj5.
Put ck+1 = bk+1dk+1 + ak+1. Then by assumption, we have 44bk+1a1 · · · akdk+15∏

4k+25≤ i≤ n ci5+ 44a1 · · · ak+15
∏

4k+25≤i≤n ci5= 4a1 · · · ak54bk+1dk+1 + ak+15
∏

4k+25≤i≤n ci =

4a1 · · · ak5
∏

4k+15≤i≤n ci ∈ I . Since dk+1 ∈ Pk+1\4
⋃

i 6=k+1 Pi5, we have 4bk+1a1 · · · akdk+15∏
4k+25≤i≤n ci ∈ I by assumption, and hence 4a1 · · · ak+15

∏
4k+25≤i≤n ci ∈ I . In

particular, if k = n− 1, then 4a1 · · · an−154bndn + an5 ∈ I , and thus a1 · · · an ∈ I .
Hence P1 · · ·Pn ⊆ I .

For the “moreover” statement, we have �4I5 ≤ n since I is an n-absorbing
ideal of R. For the reverse inequality, choose xi ∈ Pi\4

⋃
j 6=i Pj5 for each 1 ≤ i ≤ n.

Then x1 · · · xn ∈ P1 · · ·Pn ⊆ I by above. However, if some proper subproduct of the
xi’s is in I , say x2 · · · xn ∈ I ⊆ P1, then xi ∈ P1 for some 2 ≤ i ≤ n, a contradiction.
Thus �4I5 = n. �

Corollary 2.15. Let I be an n-absorbing ideal of a ring R such that I has exactly

n minimal prime ideals, say P11 0 0 0 1 Pn. If the Pi’s are comaximal, then I = P1 · · ·Pn.

Moreover, �4I5 = n. In particular, this holds if either each Pi is maximal, dim4R5 = 0,
or R is an integral domain with dim4R5 ≤ 1.

Proof. We have P1 · · ·Pn ⊆ I ⊆ P1 ∩ · · · ∩ Pn by Theorem 2.14 and P1 ∩ · · · ∩ Pn =

P1 · · ·Pn since the Pi’s are comaximal. Thus I = P1 · · ·Pn.
The “moreover” and “in particular” statements are clear. �
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1654 ANDERSON AND BADAWI

Corollary 2.16. Let I be an n-absorbing ideal of a ring R such that I has exactly n
minimal prime ideals, say P11 0 0 0 1 Pn. Then IPi

= PiPi
(in RPi

) for all 1 ≤ i ≤ n.

Proof. If n = 1, then I is a prime ideal; so we may assume that n ≥ 2. Let 1 ≤ i ≤
n. Clearly, IPi

⊆ PiPi
(in RPi

). For the reverse inclusion, let x ∈ Pi. For every 1 ≤ j ≤

n such that j 6= i, let cj ∈ Pj\4
⋃

k 6=j Pk5; then c =
∏

j 6=i cj ∈ R\Pi. Since P1 · · ·Pn ⊆ I
by Theorem 2.14, we have cx ∈ I . Thus x/s = cx/cs ∈ IPi

for all s ∈ R\Pi, and hence
IPi

= PiPi
. (For an alternate proof, just localize the inclusion P1 · · ·Pn ⊆ I ⊆ Pi at Pi.)

�

In Section 6, we consider the case when �MinR4I5� < �R4I5, and we conjecture
that if I is an n-absorbing ideal of a ring R such that I has exactly m minimal prime
ideals P11 0 0 0 1 Pm (m ≤ n by Theorem 2.5), then P1

n1 · · ·Pm
nm ⊆ I for positive integers

n11 0 0 0 1 nm with n = n1 + · · · + nm (see Theorem 6.2).

3. BASIC PROPERTIES OF n-ABSORBING IDEALS, II

In this section, we continue the study of basic properties of n-absorbing
ideals begun in the previous section. We first consider the relationship between
n-absorbing ideals and primary ideals. Our next result is a generalization of
Lemma 2.8 since any power of a maximal ideal M is M-primary (also see
Theorem 6.3, Remark 6.4(a), and Theorem 6.6).

Theorem 3.1. Let P be a prime ideal of a ring R, and let I be a P-primary ideal

of R such that Pn ⊆ I for some positive integer n (for example, if R is a Noetherian

ring). Then I is an n-absorbing ideal of R. Moreover, �4I5 ≤ n. In particular, if Pn

is a P-primary ideal of R, then Pn is an n-absorbing ideal of R with �4Pn5 ≤ n, and
�4Pn5 = n if Pn+1 ⊂ Pn.

Proof. Let x1 · · · xn+1 ∈ I for x11 0 0 0 1 xn+1 ∈ R. If one of the xi’s is not in P, then
the product of the other xi’s is in I since I is P-primary. Thus we may assume that
every xi is in P. Since Pn ⊆ I , we have x1 · · · xn ∈ I . Hence I is an n-absorbing ideal
of R.

The “moreover” and first part of the “in particular” statements are clear. The
fact that �4Pn5 = n if Pn+1 ⊂ Pn follows from the proof of the “moreover” statement
in Lemma 2.8. �

The hypothesis that Pn ⊆ I for some positive integer n is needed in the above
theorem since a primary ideal need not be an n-absorbing ideal for any positive integer
n, see Example 5.6(a). Conversely, an n-absorbing ideal I with Rad4I5 = P a prime
ideal need not be a P-primary ideal since every ideal in a Noetherian ring is an n-
absorbing ideal for some positive integer n (Theorem 5.3), but an ideal with prime
radical in a Noetherian ring need not be primary [10, Exercises 11 and 12, pp. 56–57].
In [3, Example 3.11], an example is given of a prime ideal P of a ring R such that P2 is
a 2-absorbing ideal of R, but P2 is not P-primary (also, see Example 4.11(d)). We next
give a sufficient condition for an n-absorbing ideal to be primary.

Theorem 3.2. Let P be a divided prime ideal of a ring R, and let I be an n-absorbing
ideal of R with Rad4I5 = P. Then I is a P-primary ideal of R.
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1655

Proof. Let xy ∈ I for x1 y ∈ R and y 6∈ P. Then x ∈ P, and thus x = yn−1z for some
z ∈ R since P ⊂ yn−1R because P is a divided prime ideal of R and yn−1 6∈ P. As ynz =
yx ∈ I , yn 6∈ I , and I is an n-absorbing ideal of R, we have x = yn−1z ∈ I . Hence I is
a P-primary ideal of R. �

A special case of the next result is when P is a nonzero divided prime ideal in
an integral domain R.

Theorem 3.3. Let Nil4R5 ⊂ P be divided prime ideals of a ring R. Then Pn is a

P-primary ideal of R, and thus Pn is an n-absorbing ideal of R with �4Pn5 ≤ n, for
every positive integer n. Moreover, �4Pn5 = n if Pn+1 ⊂ Pn.

Proof. We show that Pn is a P-primary ideal of R. Then Pn is also an n-absorbing
ideal of R by Theorem 3.1. Note that Nil4R5 ⊂ Pn since Nil4R5 is a divided prime
ideal of R and Nil4R5 ⊂ P. Let xy ∈ Pn for x1 y ∈ R and y 6∈ Rad4Pn5 = P. Then
xy =

∑
zi1 · · · zin with each zij ∈ P. Since P ⊂ yR because P is a divided prime ideal

of R, each zij = z′ijy with z′ij ∈ P. Thus xy = zy with z ∈ Pn. Then y4x − z5 = 0 ∈

Nil4R5 implies x − z ∈ Nil4R5 ⊂ Pn. Hence x ∈ Pn as desired.
The “moreover” statement follows from Theorem 3.1. �

Let I be a proper ideal of a ring R. For x ∈ R, let Ix = 8y ∈ R � yx ∈ I9 =
4I 2R x5. We next investigate when Ix is an n-absorbing ideal of R. In particular,
�4Ix5 ≤ �4I5 by Theorem 3.4. Example 4.11(b) and (c) show that this inequality
may be strict for x ∈ Rad4I5\I . These results generalize corresponding results for
2-absorbing ideals in [3].

Theorem 3.4. Let I be an n-absorbing ideal of a ring R. Then Ix = 4I 2R x5 is an

n-absorbing ideal of R containing I for all x ∈ R\I . Moreover, �4Ix5 ≤ �4I5 for all

x ∈ R.

Proof. Let a1 · · · an+1 ∈ Ix for a11 0 0 0 1 an+1 ∈ R. Then 4xa15a2 · · · an+1 ∈ I , and thus
either a2 · · · an+1 ∈ I or the product of xa1 with n− 1 of the ai’s for 2 ≤ i ≤ n+ 1
is in I . In either case, there is a product of n of the ai’s that is in Ix. Thus Ix is an
n-absorbing ideal of R. Clearly, I ⊆ Ix.

The “moreover” statement is clear if x ∈ R\I by above. If x ∈ I , then Ix = R,
and hence �4Ix5 = 0 ≤ �4I5. �

Theorem 3.5. Let n ≥ 2 and I ⊂ Rad4I5 be an n-absorbing ideal of a ring R.
Suppose that x ∈ Rad4I5\I , and let m4≥ 25 be the least positive integer such that xm ∈

I . Then Ixm−1 = 4I 2R xm−15 is an 4n−m+ 15-absorbing ideal of R containing I .

Proof. First note that 2 ≤ m ≤ n since I is an n-absorbing ideal of R; so n−

m+ 1 ≥ 1. Clearly I ⊆ Ixm−1 . Let a1 · · · an−m+2 ∈ Ixm−1 for a11 0 0 0 1 an−m+2 ∈ R. Since
xm−1a1 · · · an−m+2 ∈ I and I is an n-absorbing ideal of R, either the product of xm−1

with some n−m+ 1 of the ai’s is in I or xm−2a1 · · · an−m+2 ∈ I . If the product of
xm−1 with some n−m+ 1 of the ai’s is in I , then we are done. Hence assume
that the product of xm−1 with any n−m+ 1 of the ai’s is not in I , and thus
xm−2a1 · · · an−m+2 ∈ I . Since xxm−2a1 · · · an−m+14an−m+2 + x5 ∈ I and the product of
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1656 ANDERSON AND BADAWI

xm−1 with any n−m+ 1 of the ai’s is not in I , we must have xm−2a1 · · · an−m+2 +

xm−1a1 · · · an−m+1 = xm−2a1 · · · an−m+14an−m+2 + x5 ∈ I . As xm−2a1 · · · an−m+2 ∈ I , we
have xm−1a1 · · · an−m+1 ∈ I , a contradiction since we assumed that the product of
xm−1 with any n−m+ 1 of the ai’s is not in I . Thus the product of xm−1 with some
n−m+ 1 of the ai’s is in I , and hence Ixm−1 is an 4n−m+ 15-absorbing ideal of R
containing I . �

Corollary 3.6. Let n ≥ 2 and I ⊂ Rad4I5 be an n-absorbing ideal of a ring R.

Suppose that x ∈ Rad4I5\I and xn ∈ I , but xn−1 6∈ I . Then Ixn−1 = 4I 2R xn−15 is a prime

ideal of R containing Rad4I5.

Proof. Note that Ixn−1 is an 4n− n+ 15-absorbing ideal of R containing I by
Theorem 3.5, and thus Ixn−1 is a prime ideal of R containing Rad4I5. �

Corollary 3.7. Let n ≥ 2 and I be an n-absorbing P-primary ideal of a ring R for

some prime ideal P of R. If x ∈ Rad4I5\I and n is the least positive integer such that

xn ∈ I , then Ixn−1 = 4I 2R xn−15 = P.

Proof. By Corollary 3.6, we have P = Rad4I5 ⊆ Ixn−1 . Let y ∈ Ixn−1 ; so xn−1y ∈ I .
Since I is a P-primary ideal and xn−1 6∈ I , we have y ∈ P. Thus Ixn−1 = P. �

The next two theorems concern when 4I 2R x5 contains a subproduct of the
minimal prime ideals of I .

Theorem 3.8. Let n ≥ 2 and I ⊂ Rad4I5 be an n-absorbing ideal of a ring R such

that I has exactly n minimal prime ideals, say P11 0 0 0 1 Pn. Suppose that x ∈ Rad4I5\I ,

and let m4≥ 25 be the least positive integer such that xm ∈ I . Then every product of

n−m+ 1 of the Pi’s is contained in Ixm−1 = 4I 2R xm−15.

Proof. Note that m ≤ n; so n−m+ 1 ≥ 1. Let F = 8Q11 0 0 0 1 Qm−19 ⊂ G =

8P11 0 0 0 1 Pn9 and D = G\F . Then D contains exactly n−m+ 1 of the Pi’s. Since
x ∈ Rad4I5\I , we have x ∈ Qi for every 1 ≤ i ≤ m− 1. Since xm−1 ∈ Q1 · · ·Qm−1 and
4
∏

Q∈F Q54
∏

P∈D P5 = P1 · · ·Pn ⊆ I by Theorem 2.14, we have xm−1
∏

P∈D P ⊆ I , and
thus

∏
P∈D P ⊆ Ixm−1 . �

The proof of the following result is similar to that of Theorem 3.8.

Theorem 3.9. Let n ≥ 2 and I ⊂ Rad4I5 be an n-absorbing ideal of a ring R such

that I has exactly n minimal prime ideals, say P11 0 0 0 1 Pn. If x ∈ Rad4I5\I , then every

product of n− 1 of the Pi’s is contained in Ix = 4I 2R x5.

Note that the ideal I in the next result is an n-absorbing ideal of R by
Theorem 3.1.

Theorem 3.10. Let I be a P-primary ideal of a ring R such that Pn ⊆ I for some

positive integer n (for example, if R is a Noetherian ring), and let x ∈ P\I . If xm 6∈ I

for some positive integer m, then 4I 2R xm5 = Ixm is an 4n−m5-absorbing ideal of R.
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1657

Proof. First note that m < n since Pn ⊆ I ; so n−m ≥ 1. Clearly, Ixm is a P-primary
ideal of R. We have xmPn−m ⊆ I since Pn ⊆ I , and thus Pn−m ⊆ Ixm . Hence Ixm is an
4n−m5-absorbing ideal of R by Theorem 3.1. �

4. EXTENSIONS OF n-ABSORBING IDEALS

In this section, we investigate the stability of n-absorbing ideals in various
ring-theoretic constructions. The first two theorems and corollary generalize well-
known results about prime ideals and follow directly from the definitions; so their
proofs are omitted.

Theorem 4.1. Let I be an n-absorbing ideal of a ring R, and let S be a

multiplicatively closed subset of R with I ∩ S = ∅. Then IS is an n-absorbing ideal of

RS . Moreover, �RS
4IS5 ≤ �R4I5.

Theorem 4.2. Let f 2 R −→ T be a homomorphism of rings.

(a) Let J be an n-absorbing ideal of T . Then f−14J5 is an n-absorbing ideal of R.
Moreover, �R4f

−14J55 ≤ �T 4J5.
(b) Let f be surjective and I be an n-absorbing ideal of R containing ker4f5. Then f4I5

is an n-absorbing ideal of T if and only if I is an n-absorbing ideal of R. Moreover,

�T 4f4I55 = �R4I5. In particular, this holds if f is an isomorphism.

Corollary 4.3.

(a) Let R ⊆ T be an extension of rings and J an n-absorbing ideal of T . Then J ∩ R is

an n-absorbing ideal of R. Moreover, �R4J ∩ R5 ≤ �T 4J5.
(b) Let I ⊆ J be ideals of a ring R. Then J is an n-absorbing ideal of R if and only if

J/I is an n-absorbing ideal of R/I . Moreover, �R/I4J/I5 = �R4J5.

We have seen in Example 2.7 that the product of n prime ideals of a ring R
need not be an n-absorbing ideal of R. However, we do having the following result.

Corollary 4.4. Let P11 0 0 0 1 Pm be incomparable prime ideals of a ring R, I =
P

n1
1 · · ·Pnm

m for positive integers n11 0 0 0 1 nm with n = n1 + · · · + nm, and S = R\4P1 ∪

· · · ∪ Pm5. Then S4I5 = 8x ∈ R � x/1 ∈ IS9 is an n-absorbing ideal of R. In particular,

P4n5 is an n-absorbing ideal of R for P a prime ideal of R. Moreover, �4S4I55 ≤ �4I5
and �4P4n55 ≤ �4Pn5.

Proof. Let f 2 R −→ RS be the natural homomorphism f4x5 = x/1. Then
4P15S1 0 0 0 1 4Pm5S are maximal ideals of RS , and thus IS = 4P

n1
1 · · ·Pnm

m 5S is an
n-absorbing ideal of RS by Theorem 2.9. Hence S4I5 = f−144P

n1
1 · · ·Pnm

m 5S5 is an
n-absorbing ideal of R by Theorem 4.2(a).

The “in particular” statement is clear since P4n5 = S4Pn5. For the “moreover”
statement, note that �R4S4I55 ≤ �RS

4IS5 ≤ �R4I5 by Theorem 4.2(a) and
Theorem 4.1, respectively. Thus we also have �4P4n55 ≤ �4Pn5. �

The next corollary generalizes [2, Corollary 3.2], which gave the special case
when I = 4P1 · · ·Pn5v is a principal ideal of a Krull domain R. A consequence of

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
a
d
a
w
i
,
 
A
y
m
a
n
]
 
A
t
:
 
1
8
:
1
5
 
2
0
 
J
u
n
e
 
2
0
1
1



1658 ANDERSON AND BADAWI

the following corollary is that every proper divisorial ideal of a Krull domain is an
n-absorbing ideal for some positive integer n.

Corollary 4.5. Let R be a Krull domain and P11 0 0 0 1 Pn be ht-one prime ideals of R.

Then I = 4P1 · · ·Pn5v is an n-absorbing ideal of R. Moreover, �4I5 = n.

Proof. Let P1 · · ·Pn = Q
n1
1 · · ·Q

nk
k for distinct height-one prime ideals Q11 0 0 0 1 Qk of

R and positive integers n11 0 0 0 1 nk with n = n1 + · · · + nk. Then I = 4Q
n1
1 · · ·Q

nk
k 5v =

Q
4n15

1 ∩ · · · ∩Q
4nk5

k by [6, Corollary 5.7, p. 26], and thus I is an n-absorbing ideal of
R by Corollary 4.4 and Theorem 2.1(c).

For the “moreover” statement, we have �4I5 ≤ n by above. Let S = R\4Q1 ∪

· · · ∪Qk5. Then RS is a principal ideal domain (PID) [6, Corollary 13.4, p. 58] and
IS is the product of n principal prime ideals of RS; so �RS

4IS5 = n. Hence n ≤ �4I5

by Theorem 4.1, and thus �4I5 = n. �

The next example shows that the inequalities in the above results may be strict.

Example 4.6. (a) The inequality in Theorem 4.1 may be strict. Let the ring R

and the ideals I and In be as in Example 2.3. Note that RM is a field for every
maximal ideal M of R since R is a von Neumann regular ring. Since I and each In are
proper ideals of R, we have I ⊆ M and each In ⊆ Mn for maximal ideals M and Mn

of R. Thus �RM
4InMn

5 = 1 < n = �R4In5 for each integer n ≥ 2 and �RM
4IM5 = 1 <

� = �R4I5. Also, let J = 0. Then �4J5 = � > 1 = sup8�4JM5 � M ∈ Spec4R59, i.e., a
locally prime ideal need not be an n-absorbing ideal for any positive integer n.

(b) The inequality in Theorem 4.2(a) (and Corollary 4.3(a)) may be strict.
Let R = ñ6X7 ⊂ T = ñ6X1 Y7 and J = 4X1 Y 25 be an ideal of T . Then �T 4J5 = 2 by
Theorem 3.1. However, J ∩ R = XR; so �R4J ∩ R5 = 1 < 2 = �T 4J5.

(c) In Theorem 4.2(b), it is necessary to assume that ker4f5 ⊆ I . Let R =

ñ6X1 Y71 T = ñ6X7, and f 2 R −→ T be the surjective ring homomorphism given by
f4g4X1 Y55 = g4X1 05 for all g4X1 Y5 ∈ R. For I1 = 4X2 + Y5R, we have f4I15 = X2T ,
and thus �R4I15 = 1 < 2 = �T 4f4I155. For I2 = 4X1 Y 25, we have f4I25 = XT , and
hence �R4I25 = 2 > �T 4f4I255 = 1. Note that ker4f5 = YR is not contained in either
I1 or I2.

(d) The inequalities in Corollary 4.4 may also be strict. Let the ring R, the
prime ideals P1 and P2, and I = P1P2 be as in Example 2.7(a). Then �4S4I55 = 2 <

�4I5 and �4P
425
1 5 = 2 < �4P2

15.

We next determine the n-absorbing ideals in the product of two, and hence
any finite number of, rings. This generalizes the well-known result that the prime
ideals of R1 × R2 have the form R1 × P2 or P1 × R2 for Pi a prime ideal of Ri. Recall
that an ideal of R1 × R2 has the form I1 × I2 for ideals Ii of Ri.

Theorem 4.7. Let I1 be an m-absorbing ideal of a ring R1 and I2 an n-absorbing ideal

of a ring R2. Then I1 × I2 is an 4m+ n5-absorbing ideal of the ring R1 × R2. Moreover,

�R1×R2
4I1 × I25 = �R1

4I15+ �R2
4I25.
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1659

Proof. Let T = R1 × R2; we show that �T 4I1 × I25 = �R1
4I15+ �R2

4I25. First
suppose that �R1

4I15 = m < � and �R2
4I25 = n < � (we may assume that m1n ≥ 1).

Then there are x11 0 0 0 1 xm ∈ R1 and y11 0 0 0 1 yn ∈ R2 such that x1 · · · xm ∈ I1 and
y1 · · · yn ∈ I2, but no proper subproduct of the xi’s is in I1 and no proper subproduct
of the yj’s is in I2. Thus 4x11 15 · · · 4xm1 15411 y15 · · · 411 yn5 = 4x1 · · · xm1 y1 · · · yn5 ∈
I1 × I2, but no proper subproduct is in I1 × I2. Hence �T 4I1 × I25 ≥ m+ n =

�R1
4I15+ �R2

4I25. Next, let N = m+ n+ 1 and suppose that 4x11 y15 · · · 4xN 1 yN 5 ∈
I1 × I2 for 4xi1 yj5 ∈ T . Then x1 · · · xN ∈ I1 and y1 · · · yN ∈ I2; so there are
8i11 0 0 0 1 im91 8j11 0 0 0 1 jn9 ⊂ 811 0 0 0 1 N9 such that xi1 · · · xim ∈ I1 and yj1 · · · yjn ∈ I2.
Let K = 8i11 0 0 0 1 im9 ∪ 8j11 0 0 0 1 jn9; so �K� ≤ m+ n. Thus

∏
k∈K4xk1 yk5 ∈ I1 × I2;

so �T 4I1 × I25 ≤ m+ n = �R1
4I15+ �R2

4I25. The above proof also shows that
�T 4I1 × I25 is infinite if and only if either �R1

4I15 or �R2
4I25 is infinite. Hence

�T 4I1 × I25 = �R1
4I15+ �R2

4I25. �

Corollary 4.8. Let Ik be an ideal of a ring Rk for each integer 1 ≤ k ≤ n, and let

R = R1 × · · · × Rn. Then �R4I1 × · · · × In5 = �R1
4I15+ · · · + �Rn

4In5.

Corollary 4.9. Let I11 0 0 0 1 In be pairwise comaximal ideals of a ring R. Then

�4I1 ∩ · · · ∩ In5 = �4I1 · · · In5 = �4I15+ · · · + �4In5. In particular, �4M
n1
1 · · ·M

nk
k 5 =

�4M
n1
1 5+ · · · + �4M

nk
k 5 for distinct maximal ideals M11 0 0 0 1Mk of R and positive

integers n11 0 0 0 1 nk.

Proof. It is sufficient to do the n = 2 case; so let I and J be comaximal ideals of R.
Since I and J are comaximal, we have R/IJ û R/I × R/J by the Chinese Remainder
Theorem and IJ = I ∩ J . Thus �R4I ∩ J5 = �R4IJ5 = �R/IJ 405 = �R/I×R/J 40× 05 =
�R/I405+ �R/J 405 = �R4I5+ �R4J5 by Corollary 4.3 and Theorem 4.7.

The “in particular” statement is clear. �

Let R be a ring, M be an R-module, and T = R4+5M . If I is an n-absorbing
ideal of R, then it is easy to show that I4+5M is an n-absorbing ideal of T . In fact,
�T 4I4+5M5 = �R4I5. We have the following result for the special case T = R4+5R,
where R is an integral domain.

Theorem 4.10. Let D be an integral domain, R = D4+5D, and I be an n-absorbing
ideal of D that is not an 4n− 15-absorbing ideal of D. Then 04+5I is an 4n+ 15-
absorbing ideal of R that is not an n-absorbing ideal of R; so �R404+5I5 = �D4I5+ 1.
In particular, if P is a prime ideal of D, then 04+5P is a 2-absorbing ideal of R.

Proof. Since I is an n-absorbing ideal of D that is not an 4n− 15-absorbing
ideal of D, there are d11 0 0 0 1 dn ∈ D such that d1 · · ·dn ∈ I and no product of
n− 1 of the di’s is in I . Let b1 = 4d11 051 0 0 0 1 bn = 4dn1 05, and bn+1 = 401 15. Then
b1 · · · bn+1 = 401 d1 · · ·dn5 ∈ 04+5I , and it is clear the no product of n of the bi’s is
in 04+5I . Thus 04+5I is not an n-absorbing ideal of R. Next we show that 04+5I
is an 4n+ 15-absorbing ideal of R. Let c1 = 4a11m151 0 0 0 1 cn+2 = 4an+21mn+25 ∈ R
such that c1 · · · cn+2 ∈ 04+5I . Since Rad404+5I5 = 04+5D is a prime ideal of R, at
least one of the ci’s is in 04+5D, say c1 = 401m15 ∈ 04+5D. Hence c1 · · · cn+2 =

401m1a2 · · · an+25 ∈ 04+5I , and thus m1a2 · · · an+2 ∈ I . Hence either the product of
m1 with n− 1 of the ai’s is in I or the product of n of the ai’s is in I ; so either the
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1660 ANDERSON AND BADAWI

product of c1 with n− 1 of the ci’s (i 6= 1) is in 04+5I or the product of n of the
ci’s (i 6= 1) is in 04+5I . Thus 04+5I is an 4n+ 15-absorbing ideal of R, and hence
�R404+5I5 = n+ 1.

The “in particular” statement is clear. �

The following example illustrates the previous theorem.

Example 4.11. Let R = ú4+5ú.

(a) Let I = p1 · · ·pnú, where p11 0 0 0 1 pn ∈ ú are (not necessarily distinct)
positive primes. Then I is an n-absorbing ideal of ú that is not an 4n− 15-absorbing
ideal of ú. Thus 04+5I is an 4n+ 15-absorbing ideal of R that is not an n-absorbing
ideal of D by Theorem 4.10; so �R404+5I5 = �ú4I5+ 1 = n+ 1.

(b) Let p ∈ ú be a positive prime. Then J = 04+5pú is a 2-absorbing ideal
of R by Theorem 4.10 with Rad4J5 = 04+5ú. For every x ∈ Rad4J5\J , we have
Jx = 4J 2R x5 = 4pú54+5ú, a prime ideal of R. Thus �4Jx5 = 1 < 2 = �4J5 for every
x ∈ Rad4J5\J .

(c) If I is a 2-absorbing ideal of a ring T and x1 y ∈ Rad4I5\I , then Ix and Iy
are linearly ordered prime ideals of T by [3, Theorems 2.5 and 2.6]. However, this
need not be true if I is an n-absorbing ideal of a ring T and n ≥ 3. Let p11 p2 ∈ ú

be distinct positive primes. Then J = 04+5p1p2ú is a 3-absorbing ideal of R that
is not a 2-absorbing ideal of R = ú4+5ú by Theorem 4.10 with Rad4J5 = 04+5ú.
Let x = 401 n5 ∈ Rad4J5\J . Then Jx = 4p1p2ú54+5ú and �4Jx5 = 2 if n ∈ ú\4p1ú ∪

p2ú51 Jx = 4p1ú54+5ú and �4Jx5 = 1 if n ∈ p2ú\p1p2ú, and Jx = 4p2ú54+5ú and
�4Jx5 = 1 if n ∈ p1ú\p1p2ú, and these ideals are not linearly ordered. Thus, �4J5 =
3, while �4Jx5 is either 1 or 2 for all x ∈ Rad4J5\J .

(d) Let I be a P-primary ideal of a ring T such that Pm ⊆ I for some
positive integer m. If I is an n-absorbing ideal of T that is not an 4n− 15-absorbing
ideal of T , then �T 4I5 = n ≤ m by Theorem 3.1. However, by (a) above, for every
integer n ≥ 2, the ring R = ú4+5ú and ideal In = 04+54p1 · · ·pn−1ú5 of R have P =

Rad4In5 = 04+5ú a prime ideal of R such that P2 ⊆ In and �R4In5 = n (so In is not
P-primary when n ≥ 3).

Let T be a ring extension of an integral domain D and P a prime ideal
of D. Then 04+5P need not be a 2-absorbing ideal of the ring R = D4+5T ; so
Theorem 4.10 does not extend to general R. We have the following example.

Example 4.12. Let R = ú4+5ñ. Then I = 04+52ú is an ideal of R with Rad4I5 =
04+5ñ. Let x = 401 1

2
5 ∈ Rad4I5\I . Then Ix = 4I 2R x5 = 44ú54+5ñ is not a prime

ideal of R (�4Ix5 = 2), and hence I is not a 2-absorbing ideal of R by [3, Theorem
2.8]. In fact, one can easily show that I is not an n-absorbing ideal of R for any
positive integer n. For each positive integer n, let xi = 421 05 for 1 ≤ i ≤ n and xn+1 =
401 1

2n−1 5. Then x1 · · · xn+1 = 401 25 ∈ I , but no proper subproduct of the xi’s is in I .
Thus �R4I5 = �.

We next briefly consider extensions of n-absorbing ideals of R in the
polynomial ring R6X7.
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1661

Theorem 4.13. Let I be an ideal of a ring R. Then 4I1 X5 is an n-absorbing ideal of

R6X7 if and only if I is an n-absorbing ideal of R. Moreover, �R6X744I1 X55 = �R4I5.

Proof. This follows directly from Corollary 4.3(b) since 4I1 X5/4X5 û I in
R6X7/4X5 û R.

The “moreover” statement is clear. �

It is also natural to ask if �R6X74I6X75 = �R4I5. This is well known if I is a prime
ideal of R, and we conjecture that the equality holds for all ideals I of R. While we
have been unable to prove the general result, we next show that I is a 2-absorbing
ideal of R if and only if I6X7 is a 2-absorbing ideal of R6X7. But first, we need the
following trivial lemma.

Lemma 4.14. Let I be an ideal of a ring R and suppose that x + y ∈ I for some x1 y ∈

R. Then Ix = Iy (recall that Ix = 4I 2R x5).

Theorem 4.15. Let I be an ideal of a ring R. Then I6X7 is a 2-absorbing ideal of

R6X7 if and only if I is a 2-absorbing ideal of R.

Proof. If I6X7 is a 2-absorbing ideal of R6X7, then I is a 2-absorbing ideal of R by
Corollary 4.3(a).

Conversely, suppose that I is a 2-absorbing ideal of R. Recall that I6X7 is a
prime ideal of R6X7 if and only if I is a prime ideal of R. Thus we may assume that I
is not a prime ideal of R. Since either Rad4I5 = P is a prime ideal of R or Rad4I5 =
P1 ∩ P2 for prime ideals P11 P2 of R with P1P2 ⊆ I by [3, Theorem 2.4], we conclude
that either Rad4I6X75 = P6X7 or Rad4I6X75 = P16X7 ∩ P26X7 with P16X7P26X7 ⊆ I6X7.
Now let f4X5 = anX

n + · · · + a0 ∈ Rad4I6X75\I6X7. By [3, Theorems 2.8 and 2.9], it
suffices to show that I6X7f4X5 is a prime ideal of R6X7. Without loss of generality, we
may assume that ai 6∈ I for all 0 ≤ i ≤ n. Since Ia01 Ia11 0 0 0 1 Ian are linearly ordered
prime ideals of R by [3, Theorems 2.5 and 2.6], there is a k with 0 ≤ k ≤ n such
that Iak ⊆ Iai for every i, 0 ≤ i ≤ n. We show that I6X7f4X5 = Iak 6X7 is a prime ideal
of R6X7. It is clear that Iak 6X7 ⊆ I6X7f4X5. Let g4X5 = bmX

m + · · · + b0 ∈ I6X7f4X5; so
f4X5g4X5 = a0b0 + · · · + anbmX

n+m ∈ I6X7. Since b0a0 ∈ I , we conclude that b0 ∈ Ia0 .
Now let i < k such that b0 ∈ Iac for every c with 0 ≤ c ≤ i < k; we will show that
b0 ∈ Iai+1

. Consider the term 4bi+1a0 + bia1 + · · · + b1ai + b0ai+15X
i+1 of f4X5g4X5

(observe that some of the bj’s might be zero). Let t = bi+1a0 + · · · + b1ai. Since t +
b0ai+1 ∈ I , we have It = Ib0ai+1

by Lemma 4.14. Since b0 ∈ Iac for every c with 0 ≤ c ≤

i < k, we have b0 ∈ It, and thus b0 ∈ Ib0ai+1
. Hence b0 ∈ Iai+1

because Iai+1
is a prime

ideal of R, and thus b0 ∈ Iak . Now suppose that b01 0 0 0 1 bh ∈ Iak for some h with
0 ≤ h < m. We show that bh+1 ∈ Iak . Consider the term 4b0ah+1 + · · · + bh+1a05X

h+1

of f4X5g4X5; at once we conclude that bh+1 ∈ Ia0 . By repeating a similar argument
to the one used earlier to show that b0 ∈ Iak , we have bh+1 ∈ Iak . Thus g4X5 ∈ Iak 6X7.
Hence I6X7f4X5 = Iak 6X7 is a prime ideal of R6X7, and thus I6X7 is a 2-absorbing ideal
of R6X7. �

We conclude this section by investigating n-absorbing ideals for the “D +M”
construction. Let T = K +M be an integral domain, where K is a field which is
a subring of T and M is a nonzero maximal ideal of T , and let D be a subring
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1662 ANDERSON AND BADAWI

of K. Then R = D +M is a subring of T with qf4R5 = qf4T5. This construction
has proved very useful for constructing examples (cf. [4, 5, 8, 11]). The first lemma
describes the n-absorbing ideals of R which contain M .

Lemma 4.16. Let T = K +M be an integral domain, where K is a field which is a

subring of T and M is a nonzero maximal ideal of T . Let D be a subring of K and

R = D +M . Let I be an ideal of D. Then I +M is an n-absorbing ideal of R if and

only if I is an n-absorbing ideal of D. Moreover, �R4I +M5 = �D4I5.

Proof. This follows directly from Corollary 4.3(b) since 4I +M5/M û I in
R/M û D.

The “moreover” statement is clear. �

To get more complete results, we restrict to the case where T = K66X77 = K +

XK66X77 for K a field and M = XK66X77. In this case, every ideal of R = D +M =

D + XK66X77 is comparable to M . The ideals of R which contain M have the form
I + XK66X77 for I an ideal of D, and the ideals contained in M have the form WXn +

Xn+1K66X77 for W a D-submodule of K and n a positive integer [4, Theorem 2.1].
Note that Mn = XnK66X77 has �T 4M

n5 = �R4M
n5 = n for every positive integer n.

Theorem 4.17. Let D be a subring of a field K and R = D + XK66X77.

(a) If D is a field, then every proper ideal of R is an n-absorbing ideal of R for some

positive integer n.
(b) If D is a proper subring of K with qf4D5 = K, then the nonzero n-absorbing

ideals of R have the form I + XK66X77, where I is an n-absorbing ideal of D, or

XmK66X77 for m an integer with 1 ≤ m ≤ n. Moreover, �R4I + XK66X775 = �D4I5
and �R4X

mK66X775 = m.

Proof. (a) If D = K, this is clear since then R = K66X77 is a DVR. So, let D = F
be a proper subfield of K. Then R = F + XK66X77 is a one-dimensional quasilocal
integral domain with maximal ideal M = XK66X77. Each proper nonzero ideal of R
is M-primary and has the form I = WXn + Xn+1K66X77 for some nonzero F -subspace
W of K and positive integer n. Then Mn+1 ⊆ I implies that �R4I5 ≤ n+ 1 by
Theorem 3.1. Thus every proper ideal of R is an n-absorbing ideal of R for some
positive integer n.

(b) Let D ⊂ qf4D5 = K and J be a nonzero n-absorbing ideal of R. Then J is
comparable to M . If M ⊂ J , then J = I + XK66X77 for I an n-absorbing ideal of D
by Lemma 4.16. So we may assume that J ⊆ M . Then J = WXm + Xm+1K66X77 for
W a nonzero D-submodule of K and positive integer m. Suppose that W ⊂ K. Then
there are 0 6= a1 d ∈ D such that a ∈ W , but a

di
6∈ W for all positive integers i. Then

di4 a
di
Xm5 = aXm ∈ J , but no proper subproduct is in J ; so J is not an i-absorbing

ideal of R for any positive integer i, i.e., �R4J5 = �. Thus W = K; so J = XmK66X77
is an m-absorbing ideal of R and 1 ≤ m ≤ n.

The “moreover” statement follows from Lemma 4.16 and the comments before
this theorem. �

The next example illustrates the two cases of the previous theorem.
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1663

Example 4.18. (a) Let R = ñ+ Xò66X77 ⊂ ò66X77. Then R is a one-dimensional
quasilocal integral domain with non-finitely generated maximal ideal M = Xò66X77,
and R is not a valuation domain [8, Exercises 12–13, pp. 202–203]. Each proper
nonzero ideal of R has the form I = WXn + Xn+1ò66X77 for some nonzeroñ-subspace
W of ò and positive integer n. Then Mn+1 ⊆ I implies that �R4I5 ≤ n+ 1. If W = ò,
then I = Xnò66X77 and �R4I5 = n; otherwise �R4I5 = n+ 1. To see this, let � ∈ ò\W

with � > 0, and let � = �
1
n . Then 4�X5n+1 ∈ I , but 4�X5n = �Xn 6∈ I . Thus every proper

ideal of R is an n-absorbing ideal of R for some positive integer n.

(b) Let R = F + XK66X77 for F a proper subfield of K. Then R is a
one-dimensional quasilocal integral domain with maximal ideal M = XK66X77.
Moreover, R is never a valuation domain and ring-theoretic properties of R

depend on the field extension K/F . For example, R is Noetherian if and only if
6K 2 F7 < �, and R is integrally closed if and only if F is algebraically closed in
K [4, Theorem 2.1]. Thus for various choices of fields F ⊂ K, we obtain integral
domains R satisfying certain ring-theoretic properties, and all proper ideals of R are
n-absorbing ideals of R for some positive integer n by Theorem 4.17(a).

(c) Let R = ú+ Xñ66X77 ⊂ ñ66X77. Then R is a two-dimensional Bézout
domain which is not a valuation domain with Spec4R5 = 801 Xñ66X779 ∪ 8pR � p ∈

ú prime9 [5, Theorem 7 and Corollary 9]. The ideal I = XR = úX + X2ñ66X77 is
not an n-absorbing ideal of R for any positive integer n; so �R4I5 = �. This follows
since 2n4 1

2n
X5 = X ∈ I , but no proper subproduct is in I . By Theorem 4.17(b) (or

Theorem 5.7), a nonzero n-absorbing ideal of R has the form I1 = p
n1
1 · · ·p

nk
k R =

p
n1
1 · · ·p

nk
k ú+ Xñ66X77 for distinct positive primes p11 0 0 0 1 pk ∈ ú and positive

integers n11 0 0 0 1 nk with n1 + · · · + nk ≤ n or I2 = Xmñ66X77 for m a positive integer
with m ≤ n. Moreover, �R4I15 = n1 + · · · + nk and �R4I25 = m.

(d) Let D be a subring of a field K with D ⊂ qf4D5 = F ⊂ K. Then the
nonzero ideals of R = D +M contained in M = XK66X77 have the form I = WXm +

Xm+1K66X77 for some nonzero D-submodule W of K and positive integer m. If W ⊂

K, then I may or may not be an n-absorbing ideal of R for some positive integer n.
For example, let I1 = XR = DX + X2K66X77 and I2 = FX + X2K66X77. Then one can
easily verify that �R4I15 = � and �R4I25 = 2.

5. n-ABSORBING IDEALS IN SPECIFIC RINGS

In this section, we study n-absorbing ideals in several special classes of
commutative rings. If R is a Dedekind domain, then every proper nonzero ideal
of R is a product of maximal ideals of R, and hence is an n-absorbing ideal for
some positive integer n (see Corollary 4.5 for a Krull domain analog). Specifically,
if I = M1 · · ·Mn with each Mi a maximal ideal of R, then I is an n-absorbing ideal of
R by Theorem 2.9. In fact, the converse is true if R is a Noetherian integral domain.

Theorem 5.1. Let R be a Noetherian integral domain. Then the following statements

are equivalent:

(1) R is a Dedekind domain;

(2) If I is an n-absorbing ideal of R, then I = M1 · · ·Mm for maximal ideals

M11 0 0 0 1Mm of R with 1 ≤ m ≤ n.
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1664 ANDERSON AND BADAWI

Moreover, if I = M1 · · ·Mn for maximal ideals M11 0 0 0 1Mn of a Dedekind domain

R which is not a field, then �4I5 = n.

Proof. 415 ⇒ 425 This has already been observed above.

425 ⇒ 415 Let M be a maximal ideal of R. Since every ideal between M2 and
M is an M-primary ideal of R, and hence a 2-absorbing ideal of R by Theorem 3.1,
the hypothesis in (2) implies that there are no ideals of R properly between M2 and
M . Thus R is a Dedekind domain by [8, Theorem 39.2].

The “moreover” statement follows from Lemma 2.8 and Corollary 4.9. �

We next give a similar result for almost Dedekind domains.

Theorem 5.2. Let R be an almost Dedekind domain. Then a nonzero ideal I of R is

an n-absorbing ideal of R if and only if I = M1 · · ·Mm for maximal ideals M11 0 0 0 1Mm

of R with 1 ≤ m ≤ n. Moreover, �4M1 · · ·Mm5 = m.

Proof. Let I be a nonzero n-absorbing ideal of R. Then there are only a finite
number of prime (maximal) ideals of R minimal over I , say P11 0 0 0 1 Pk with k ≤ n,
by Theorem 2.5. For each 1 ≤ i ≤ k, we have IPi

= 4P
ni
i 5Pi

for some positive integer
ni since RPi

is a DVR (note that ni ≤ n by Theorem 4.1). Let J = P
n1
1 · · ·P

nk
k . Then

IM = JM for each maximal ideal M of R; so I = J is a product of maximal ideals of
R. The converse holds by Theorem 2.9.

The “moreover” statement follows as in Theorem 5.1. �

We have seen that a ring may have proper ideals that are not n-absorbing
ideals for any positive integer n. However, we next show that in a Noetherian ring,
every proper ideal is an n-absorbing ideal for some positive integer n.

Theorem 5.3. Let R be a Noetherian ring. Then every proper ideal of R is an n-
absorbing ideal of R for some positive integer n.

Proof. Let J be a P-primary ideal of R for some prime ideal P of R. Then Pm ⊆ J
for some positive integer m since R is Noetherian. Thus J is an m-absorbing ideal
of R by Theorem 3.1. Let I be a proper ideal of R. Then I is a finite intersection
of primary ideals of R since R is Noetherian [10, Theorem 2.7], and hence I is an
n-absorbing ideal of R for some positive integer n by Theorem 2.1(c). �

We next determine the n-absorbing ideals in a valuation domain. We will need
the following lemma (cf. Theorem 6.2).

Lemma 5.4. Let R be a Bézout ring, I an n-absorbing ideal of R, and P a prime ideal

of R such that Rad4I5 = P. Then Pn ⊆ I . In particular, this holds if R is a valuation

domain.

Proof. Let x11 0 0 0 1 xn ∈ P. Since R is a Bézout ring, we have 4x11 0 0 0 1 xn5 = xR for
some x ∈ P, and thus x1 · · · xn = xny for some y ∈ R. Since xn ∈ I by Theorem 2.1(e),
we have x1 · · · xn = xny ∈ I , and hence Pn ⊆ I .

The “in particular” statement is clear. �
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1665

The key fact for our characterization of n-absorbing ideals in a valuation
domain R is that if the prime ideal P of R is not idempotent, then every P-primary
ideal of R has the form Pm for some positive integer m [8, Theorem 17.3(b)]. Since
PQ = P for prime ideals P ⊂ Q of R, the following theorem may be restated as
follows: an ideal I of a valuation domain R is an n-absorbing ideal of R for some
positive integer n if and only if I is a product of prime ideals of R.

Theorem 5.5. Let R be a valuation domain and n a positive integer. Then the

following statements are equivalent for an ideal I of R:

(1) I is an n-absorbing ideal of R;
(2) I is a P-primary ideal of R for some prime ideal P of R and Pn ⊆ I;
(3) I = Pm for some prime ideal P4= Rad4I55 of R and integer m with 1 ≤ m ≤ n.

Moreover, �4Pn5 = n for P a nonidempotent prime ideal of R.

Proof. 415 ⇒ 425 Let I be an n-absorbing ideal of R. Then P = Rad4I5 is a
divided prime ideal of R by [8, Theorem 17.1(2)], and hence I is a P-primary ideal
of R by Theorem 3.2. We have Pn ⊆ I by Lemma 5.4.

425 ⇒ 435 This follows from [8, Theorem 17.3(b)].

435 ⇒ 415 We may assume that I is nonzero. By Theorem 3.3, I = Pm is an
m-absorbing ideal of R. Thus I is also an n-absorbing ideal of R by Theorem 2.1(b).

The “moreover” statement follows from Theorem 3.3 since Pn+1 ⊂ Pn for every
positive integer n. �

Our next example shows that the “Noetherian” hypothesis is needed in
Theorems 5.1 and 5.3. In each case, the specific details follow directly from
Theorem 5.5 and well-known results about the value group of a valuation domain
(cf. [8]).

Example 5.6. (a) Let R be a one-dimensional valuation domain with maximal
ideal M . Thus all nonzero proper ideals of R are M-primary. If M is principal, then
R is a DVR, and thus every proper ideal of R is an n-absorbing ideal for some
positive integer n. In this case, �4Mn5 = n and �405 = 1. If M is not principal, then
M = M2, and hence 0 and M are the only n-absorbing ideals of R for any positive
integer n. In this case, �4M5 = �405 = 1 and �4I5 = � for any ideal I of R with
0 ⊂ I ⊂ M . Note that I is M-primary (cf. Theorem 3.1).

(b) Let R be a two-dimensional valuation domain with prime ideals 0 ⊂ P ⊂

M and value group G. If G = ú⊕ ú (all direct sums have the lexicographic order),
then P2 6= P and M2 6= M ; so 01 Pk, and Mk with 1 ≤ k ≤ n are the only n-absorbing
ideals of R for any positive integer n (i.e., �4Mn5 = �4Pn5 = n and �405 = 1). If
G = ñ⊕ñ, then P2 = P and M2 = M ; so 01 P and M are the only n-absorbing
ideals of R for any positive integer n (i.e., �4M5 = �4P5 = �405 = 1). If G = ú⊕ñ,
then M2 = M and P2 6= P; so 01 Pk with 1 ≤ k ≤ n, and M are the only n-absorbing
ideals of R for any positive integer n (i.e., �4M5 = �405 = 1 and �4Pn5 = n). If
G = ñ⊕ ú, then P2 = P and M2 6= M ; so 01 P, and Mk with 1 ≤ k ≤ n are the
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1666 ANDERSON AND BADAWI

only n-absorbing ideals of R for any positive integer n (i.e., �4P5 = �405 = 1 and
�4Mn5 = n).

(c) For each positive integer m or �, there is a valuation domain R with
dim4R5 = m such that the prime ideals of R are the only n-absorbing ideals of R for
any positive integer n (let R be a valuation domain with value group G =

⊕m

i=1 ñ).

These results can also be extended to Prüfer domains. Recall that
incomparable prime ideals of a Prüfer domain R are comaximal since R is locally a
valuation domain. Also, a prime ideal P of a Prüfer domain R is idempotent if and
only if PP is idempotent in RP .

Theorem 5.7. Let R be a Prüfer domain. Then an ideal I of R is an n-absorbing

ideal of R for some positive integer n if and only if I is a product of prime ideals of R.

Moreover, if P11 0 0 0 1 Pk are incomparable prime ideals of R and n11 0 0 0 1 nk are positive

integers with ni = 1 if Pi is idempotent, then �4P
n1
1 · · ·P

nk
k 5 = n1 + · · · + nk.

Proof. Let I be a nonzero n-absorbing ideal of R, and let P11 0 0 0 1 Pk with k ≤ n be
the minimal prime ideals of I (Theorem 2.5). Then the Pi’s are pairwise comaximal
since R is a Prüfer domain. By Theorems 4.1 and 5.5, we have IPi

= 4P
ni
i 5Pi

for some
positive integer ni. Let J = P

n1
1 · · ·P

nk
k . Let M be a maximal ideal of R; we may

assume that Pi is the only minimal prime ideal of I contained in M . As above, IM =

4P
ki
i 5M for some positive integer ki; and we can assume that ki = ni since 4IM5Pi

= IPi
.

Thus IM = JM for every maximal ideal M of R, and hence I = J . So I is a product
of prime ideals of R.

Conversely, suppose that I is a product of prime ideals of R. Note that if
P ⊂ Q are prime ideals of R, then PQ = P (since this holds locally). Thus we
may assume that I = P

n1
1 · · ·P

nk
k , where P11 0 0 0 1 Pk are comaximal prime ideals of R

and the ni’s are positive integers with n = n1 + · · · + nk. Each P
ni
i is a Pi-primary

ideal of R by [8, Lemma 23.2(b)]. Thus each P
ni
i is an ni-absorbing ideal of R by

Theorem 3.1, and hence I is an n-absorbing ideal of R by Theorem 2.1(c) since I =

P
n1
1 · · ·P

nk
k = P

n1
1 ∩ · · · ∩ P

nk
k (or use Corollary 4.9).

The “moreover” statement follows from Theorem 3.1 and Corollary 4.9. �

We have seen that every proper ideal of either a Noetherian ring or certain
valuation domains is an n-absorbing ideal for some positive integer n. For any
ring R, we define ì4R5 = 8�R4I5 � I is a proper ideal of R9. Then 819 ⊆ ì4R5 ⊆

î ∪ 8�9. The following example and theorems give the possible values for ì4R5 in
several classes of rings.

Example 5.8. (a) Let n = p
n1
1 · · ·p

nk
k for distinct positive primes p11 0 0 0 1 pk ∈ ú

and positive integers n11 0 0 0 1 nk. Then ì4ún5 = 811 0 0 0 1 m9, where m = n1 + · · · + nk,
by Theorem 4.7. In particular, ì4úpn5 = 811 0 0 0 1 n9 for any positive prime p ∈ ú and
positive integer n.

(b) Let R = ú (or any PID, not a field); then ì4R5 = î by Theorem 2.1(d).

(c) Let R =
∏�

i=1 ú21 I , and In be as in Example 2.3. Then �4In5 = n for each
n ∈ î and �4I5 = �; so ì4R5 = î ∪ 8�9.
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1667

(d) Let R be a zero-dimensional quasilocal ring with maximal ideal M

such that Mn+1 ⊂ Mn for every positive integer n (for example, let K be a field
and R = K68Xn � n ∈ î97/48Xn+1

n � n ∈ î95). Then î ⊆ ì4R5 by Lemma 2.8 (cf.
Remark 6.4(b)).

(e) Let T = ñ+ Xò66X77, M = Xò66X77, and n be a positive integer.
Then ì4T5 = î and R = T/Mn has ì4R5 = 811 0 0 0 1 n9 by Example 4.18(a) and
Corollary 4.3(b). Note that T is not Noetherian and R is not Artinian for n ≥ 2.

Let n be a fixed positive integer. Then it is easy to give necessary conditions
for every proper ideal of a ring R to be an n-absorbing of R, i.e, ì4R5 ⊆

811 0 0 0 1 n9. Example 5.8(d) shows that the converse of the following theorem is
false: a quasilocal ring R with dim4R5 = 0 may have ì4R5 infinite. For a converse,
see Theorem 6.5. Also, we may have ì4R5 finite and dim4R5 > 0 if � ∈ ì4R5

(Example 5.6(a)).

Theorem 5.9. Let R be a ring and n a positive integer such that every proper ideal of

R is an n-absorbing ideal of R. Then dim4R5 = 0 and R has at most n maximal ideals.

Proof. Suppose that dim4R5 ≥ 1; so R has prime ideals P ⊂ Q. Choose x ∈ Q\P,
and let I = xn+1R. Then xn ∈ I since I is an n-absorbing ideal of R, and thus xn =
xn+1y for some y ∈ R. Hence xn41− xy5 = 0 ∈ P, and thus 1− xy ∈ P ⊂ Q. Then
x ∈ Q gives 1 ∈ Q, a contradiction, and hence dim4R5 = 0. That R has at most n
maximal ideals follows from Theorem 2.6. �

Lemma 5.10. Let M be a finitely generated maximal ideal of a ring R. If Mn =

Mn+1 for some positive integer n, then ht4M5 = 0. In particular, if R is Noetherian with

dim4R5 ≥ 1, then there is a maximal ideal M of R with Mn+1 ⊂ Mn for every positive

integer n.

Proof. Suppose that ht4M5 ≥ 1. Then P ⊂ M for some prime ideal P of R. In RM ,
we have PM ⊂ MM and MMM

n
M = Mn

M ; so Mn
M = 0 by Nakayama’s Lemma. But then

Mn
M ⊆ PM ; so PM = MM , a contradiction. Thus ht4M5 = 0.

The “in particular” statement is clear. �

Theorem 5.11. Let R1R1, and R2 be rings.

(a) If �Max4R5� = n < �, then 811 0 0 0 1 n9 ⊆ ì4R5. If Max4R5 is infinite, then î ⊆

ì4R5.

(b) Let I be a proper ideal of R. Then ì4R/I5 ⊆ ì4R5.

(c) ì4R5 ⊆ ì4R6X75.

(d) ì4R1 × R25 = ì4R15+ì4R25.

(e) Let M be an R-module. Then ì4R5 ⊆ ì4R4+5M5.

(f) Let T = K +M be an integral domain, where K is a field which is a subring of T

and M is a nonzero maximal ideal of T , and let D be a subring of K. Then ì4D5 ⊆

ì4D +M5.

(g) R is a field if and only if ì4R5 = 819.
(h) If R is an Artinian ring, then ì4R5 = 811 0 0 0 1 n9 for some n ∈ î.
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1668 ANDERSON AND BADAWI

(i) If R is a Noetherian ring with dim4R5 ≥ 1, then ì4R5 = î.

(j) Let R be a valuation domain (not a field). Then ì4R5 = î if R is a DVR. If R is

not a DVR, then ì4R5 = 811�9 if all nonzero prime ideals of R are idempotent,

and ì4R5 = î ∪ 8�9 if R has a nonidempotent nonzero prime ideal.

Proof. (a) This follows from Theorem 2.6.

(b) This follows from Corollary 4.3(b).

(c) This follows from Theorem 4.13.

(d) This follows from Theorem 4.7.

(e) This follows from our earlier observation just before Theorem 4.10 that
�R4+5M4I4+5M5 = �R4I5 for every ideal I of R.

(f) This follows from Lemma 4.16.

(g) This is clear since every proper ideal of a ring R is a prime ideal if and
only if R is a field.

(h) If R is local, this follows from Theorem 3.1. The general case then follows
from Corollary 4.8 since every Artinian ring is the direct product of finitely many
local Artinian rings.

(i) We have ì4R5 ⊆ î by Theorem 5.3. Lemmas 2.8 and 5.10 give î ⊆

ì4R5. Thus ì4R5 = î.

(j) This follows from Theorem 5.5. �

The inclusions in the above theorem may be strict. This is clear for (a), (b), (e),
and (f). For (c), let R be any Artinian ring. Then ì4R5 is finite by (h), but ì4R6X75 =
î by (i) since R6X7 is Noetherian with dim4R6X75 = 1. However, if R is Noetherian
with dim4R5 ≥ 1, then ì4R5 = ì4R6X75 = î by (i) since R6X7 is Noetherian with
dim4R6X75 ≥ 2. Example 5.8(e) shows that the converse of (h) is false. Also, in
(h), for every positive integer n, there is a local Artinian ring Rn with ì4Rn5 =
811 0 0 0 1 n9; just let Rn = úpn for p prime (cf. Example 5.8(a)).

We end this section with two questions. If n ∈ ì4R5 for some positive integer
n, then is m ∈ ì4R5 for every integer m with 1 ≤ m ≤ n? Is ì4RS5 ⊆ ì4R5 for S a
multiplicatively closed subset of R?

6. STRONGLY n-ABSORBING IDEALS

In this final section, we introduce and study strongly n-absorbing ideals. It
is well known that a proper ideal I of a ring R is a prime ideal of R if and only
if whenever I1I2 ⊆ I for ideals I11 I2 of R, then either I1 ⊆ I or I2 ⊆ I . Let n be a
positive integer. We say that a proper ideal I of a ring R is a strongly n-absorbing

ideal if whenever I1 · · · In+1 ⊆ I for ideals I11 0 0 0 1 In+1 of R, then the product of some
n of the Ij’s is in I . Thus a strongly 1-absorbing ideal is just a prime ideal, and
the intersection of n prime ideals is a strongly n-absorbing ideal. It is clear that a
strongly n-absorbing ideal of R is also an n-absorbing ideal of R, and in [3, Theorem
2.13], it was shown that these two concepts agree when n = 2. We conjecture that
these two concepts agree for all positive integers n. In Corollary 6.9, we show that
they agree for Prüfer domains.
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ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1669

Let I be a proper ideal of a ring R. If I is a strongly n-absorbing
ideal of R for some positive integer n, we define �∗

R4I5 = min8n �

I is a strongly n-absorbing ideal of R9; otherwise, set �∗
R4I5 = � (we will just write

�∗4I5 when the context is clear). Also, set �∗
R4R5 = 0; so �∗

R4I5 ∈ î ∪ 801�9,
�∗

R4I5 = 1 if and only if I is a prime ideal of R, and �R4I5 ≤ �∗
R4I5 for every ideal I

of R. Define ì∗4R5 = 8�∗
R4I5 � I is a proper ideal of R9; so 819 ⊆ ì4R5 ⊆ î ∪ 8�9.

The interested reader may formulate results for �∗ and ì∗ analogous to those
for � and ì. We will use the analog of Theorem 2.1(c) several times; namely,
�∗4I1 ∩ · · · ∩ Im5 ≤ �∗4I15+ · · · + �∗4Im5 for ideals I11 0 0 0 1 Im of R. However, we next
conjecture that �R = �∗

R, and thus also ì4R5 = ì∗4R5, for any ring R.

Conjecture 1. Let n be a positive integer. Then a proper ideal I of a ring R is
a strongly n-absorbing ideal of R if and only I is an n-absorbing ideal of R (i.e.,
�R4I5 = �∗

R4I5 for every ideal I of R, and thus ì4R5 = ì∗4R55.

Conjecture 2. Let n be a positive integer, and let I be an n-absorbing ideal of a
ring R. Then Rad4I5n ⊆ I .

We first show that Conjecture 1 implies Conjecture 2.

Theorem 6.1. Let n be a positive integer and I a strongly n-absorbing ideal of a ring

R. Then Rad4I5n ⊆ I . In particular, Conjecture 1 implies Conjecture 2.

Proof. Let x11 0 0 0 1 xn ∈ Rad4I5, and let J = 4x11 0 0 0 1 xn5 ⊆ Rad4I5. Then xni ∈ I for
each 1 ≤ k ≤ n by Theorem 2.1(e), and thus Jnn ⊆ I . Hence Jn ⊆ I since I is a
strongly n-absorbing ideal of R, and thus Rad4I5n ⊆ I .

The “in particular” statement is clear. �

We next give some consequences of these two conjectures. The first theorem
extends Theorem 2.14 and holds for n-absorbing ideals if Conjecture 1 holds.

Theorem 6.2. Let n be a positive integer and I a strongly n-absorbing ideal of a ring

R such that I has exactly m4≤ n5 minimal prime ideals P11 0 0 0 1 Pm. Then P
n1
1 · · ·Pnm

m ⊆ I

for positive integers n11 0 0 0 1 nm with n = n1 + · · · + nm. In particular, if Rad4I5 = P is

a prime ideal of R, then Pn ⊆ I .

Proof. Note that m ≤ n by Theorem 2.5. Let J = Rad4I5 = P1 ∩ · · · ∩ Pm. Then
P1 · · ·Pm ⊆ P1 ∩ · · · ∩ Pm = J ; so 4P1 · · ·Pm5

n ⊆ Jn ⊆ I by Theorem 6.1, and thus
Pn
1 · · ·P

n
m ⊆ I . Since I is a strongly n-absorbing ideal of R, we have P

n1
1 · · ·Pnm

m ⊆ I

for nonnegative integers n11 0 0 0 1 nm with n = n1 + · · · + nm. Since P
n1
1 · · ·Pnm

m ⊆ I ⊆

Pi for each 1 ≤ i ≤ m, we must have each ni ≥ 1.
The “in particular” statement is clear. �

Theorem 6.3. Let P be a prime ideal of a ring R, n a positive integer, and suppose

that Conjecture 2 holds.

(a) If Pn is a P-primary ideal of R and Pn ⊂ Pn−1, then �4Pn5 = n.

(b) If P is a maximal ideal of R and Pn ⊂ Pn−1, then �4Pn5 = n.

(c) Let I be a P-primary ideal of a ring R. If Pn ⊆ I and Pn−1 6⊂ I , then �4I5 = n.
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1670 ANDERSON AND BADAWI

Proof. (a) We have �4Pn5 ≤ n by Theorem 3.1. If �4Pn5 ≤ n− 1, then Pn−1 ⊆ Pn

by Conjecture 2, a contradiction.

(b) If P is a maximal ideal of R, then Pn is P-primary.

(c) The proof is similar to that of (a). �

Remark 6.4. (a) Note that Theorem 6.3 improves the condition for �4Pn5 =

n from Pn+1 ⊂ Pn to Pn ⊂ Pn−1 in the “moreover” statements of Lemma 2.8,
Theorems 3.1, and 3.3.

(b) Let M be the maximal ideal of a quasilocal ring R with dim4R5 = 0 such
that Mn+1 ⊂ Mn for every positive integer n. If Conjecture 2 holds, then �R405 = �.
(If �R405 = n < �, then Mn = 0 by Conjecture 2, a contradiction.)

The next theorem gives a converse to Theorem 5.9. Note that if Conjecture 1
holds, then the hypothesis that 0 is a strongly n-absorbing ideal of R may be deleted.

Theorem 6.5. Let n be a positive integer and R a ring such that 0 is a strongly n-

absorbing ideal of R. Then every proper ideal of R is an n-absorbing ideal of R if and

only if R is isomorphic to R1 × · · · × Rm, where 1 ≤ m ≤ n, each Ri is a quasilocal

ring with maximal ideal Mi, and there are positive integers n11 0 0 0 1 nm such that n =

n1 + · · · + nm and M
ni
i = 0 for each 1 ≤ i ≤ m.

Proof. Suppose that R is isomorphic to T = R1 × · · · × Rm, where 1 ≤ m ≤ n, each
Ri is a quasilocal ring with maximal ideal Mi, and there are positive integers
n11 0 0 0 1 nm such that n = n1 + · · · + nm and M

ni
i = 0 for each 1 ≤ i ≤ m. First,

observe that every proper ideal of each Ri is an Mi-primary ideal of Ri, and if
Ii is a proper ideal of Ri, then �Ri

4Ii5 ≤ ni by Theorem 3.1 since M
ni
i = 0. Let

I11 0 0 0 1 Im be ideals of R11 0 0 0 1 Rm, respectively. Then �T 4I1 × · · · × Im5 = �R1
4I15+

· · · + �Rm
4Im5 ≤ n1 + · · · + nm = n by Corollary 4.8. Thus every proper ideal of T is

an n-absorbing ideal of T , and hence the same holds for R û T by Theorem 4.2(b).
Conversely, suppose that every proper ideal of R is an n-absorbing ideal

of R. Then dim4R5 = 0 and R has m ≤ n maximal ideals by Theorem 5.9. Let
M11 0 0 0 1Mm be the maximal ideals of R. Since 0 is a strongly n-absorbing ideal of
R, we have M

n1
1 · · ·Mnm

m = 0 for positive integers n11 0 0 0 1 nm with n = n1 + · · · + nm

by Theorem 6.2. Thus R is isomorphic to R/M
n1
1 × · · · × R/Mnm

m by the Chinese
Remainder Theorem, and this product satisfies the desired properties. �

Our final theorem gives a case where the two concepts of n-absorbing
and strongly n-absorbing ideals are equivalent. Note that the hypothesis in
Theorem 6.6(1) that I is an n-absorbing ideal of R is redundant by Theorem 3.1. As
corollaries, we have that the product of n maximal ideals is a strongly n-absorbing
ideal (cf. Theorem 2.9), that every proper ideal of a Noetherian ring is a strongly
n-absorbing ideal for some positive integer n (cf. Theorem 5.3), and that Conjecture
1 holds for the class of Prüfer domains (Corollary 6.9).

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
a
d
a
w
i
,
 
A
y
m
a
n
]
 
A
t
:
 
1
8
:
1
5
 
2
0
 
J
u
n
e
 
2
0
1
1



ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1671

Theorem 6.6. Let I be a P-primary ideal of a ring R and n a positive integer. Then

the following statements are equivalent:

(1) I is an n-absorbing ideal of R and Pn ⊆ I;

(2) I is a strongly n-absorbing ideal of R.

In particular, if Pn is P-primary, then Pn is a strongly n-absorbing ideal of R.

Proof. 415 ⇒ 425 Suppose that I1 · · · In+1 ⊆ I for ideals I11 0 0 0 1 In+1 of R, but no
product of n of the Ij’s is contained in I . Then each Ij is contained in P since I is
P-primary, and thus every product of n of the Ij’s is contained in I because Pn ⊆ I .
This is a contradiction; so there is a product of n of the Ij’s that is contained in I .

425 ⇒ 415 This is clear by Theorem 6.2.
The “in particular” statement is clear by Theorem 3.1 and 415 ⇒ 425 above.

�

Corollary 6.7. Let M11 0 0 0 1Mn be maximal ideals of a ring R. Then I = M1 · · ·Mn is

a strongly n-absorbing ideal of R.

Proof. The proof is essentially the same as the proof of Theorem 2.9, but
with Theorem 6.6 replacing an appeal to Lemma 2.8 and using the analog of
Theorem 2.1(c) for strongly absorbing ideals. �

Corollary 6.8. Let R be a Noetherian ring. Then every proper ideal of R is a strongly

n-absorbing ideal of R for some positive integer n.

Proof. The proof is essentially the same as the proof of Theorem 5.3, but
with Theorem 6.6 replacing an appeal to Theorem 3.1 and using the analog of
Theorem 2.1(c) for strongly absorbing ideals. �

Corollary 6.9. Let R be a Prüfer domain and n a positive integer. Then an ideal I

of R is a strongly n-absorbing ideal of R if and only if I is an n-absorbing ideal of R.

Moreover, �4I5 = �∗4I5.

Proof. We show that �4I5 = �∗4I5 for I a nonzero, proper ideal of R with �4I5 =

n. By (the proof of) Theorem 5.7, we may assume that I = P
n1
1 · · ·P

nk
k , where the

Pi’s are comaximal prime ideals of R, the ni’s are positive integers with ni = 1 if
Pi is idempotent, and n = n1 + · · · + nk. Thus �4I5 ≤ �∗4I5 = �∗4P

n1
1 ∩ · · · ∩ P

nk
k 5 ≤

�∗4P
n1
1 5+ · · · + �∗4P

nk
k 5 ≤ n1 + · · · + nk = n = �4I5 by the analog of Theorem 2.1(c)

for strongly absorbing ideals and Theorem 6.6 (recall that each P
ni
i is a primary ideal

of R by [8, Lemma 23.2(b)]). Hence �4I5 = �∗4I5. �
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