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Let R be a commutative ring with 1# 0 and n a positive integer. In this article,
we study two generalizations of a prime ideal. A proper ideal 1 of R is called
an n-absorbing (resp., strongly n-absorbing) ideal if whenever x,---x,,, €1 for
Xiyeees X, €R (vesp, Iy --- 1,y €I forideals I, ...,1,., of R), then there are n
of the x;’s (resp., n of the I,’s) whose product is in 1. We investigate n-absorbing and
strongly n-absorbing ideals, and we conjecture that these two concepts are equivalent.
In particular, we study the stability of n-absorbing ideals with respect to various ring-
theoretic constructions and study n-absorbing ideals in several classes of commutative
rings. For example, in a Noetherian ring every proper ideal is an n-absorbing ideal for
some positive integer n, and in a Priifer domain, an ideal is an n-absorbing ideal for
some positive integer n if and only if it is a product of prime ideals.
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1. INTRODUCTION

In this article, we study n-absorbing ideals in commutative rings with identity,
which are a generalization of prime ideals. The concept of 2-absorbing ideals was
introduced and investigated in [3]. Let n be a positive integer. A proper ideal I of
a commutative ring R is called an n-absorbing ideal it whenever x, ---x,,, € I for
Xi,..., X, €R, then there are n of the x;’s whose product is in /. Equivalently,
a proper ideal I of R is an n-absorbing ideal if and only if whenever x,---x,, € [
for x,...,x, € R with m > n, then there are n of the x,’s whose product is in /.
In terms of factor rings, I is an n-absorbing ideal of R if and only if whenever
the product of n+ 1 elements of R/I is 0, then the product of some n of these
elements is 0 in R/I. Thus a 1-absorbing ideal is just a prime ideal. More generally,
we show that the intersection of n prime ideals, the product of n maximal ideals,
the nth symbolic power of a prime ideal, the product of n principal prime ideals
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in an integral domain, and (divisorial) ideals which are the v-product of n height-
one prime ideals in a Krull domain are all n-absorbing ideals. For principal ideals
in an integral domain, this concept has been studied with respect to nonunique
factorization in [2]. Other generalizations of prime ideals have recently been studied
in [1].

In Section 2, we give some basic properties of n-absorbing ideals. For
example, we show that an n-absorbing ideal has at most » minimal prime ideals
(Theorem 2.5), that the product of n maximal ideals is an n-absorbing ideal
(Theorem 2.9), and that if an n-absorbing ideal I has exactly » minimal prime ideals
Py,...,P, then P,---P, C I (Theorem 2.14). However, the product of n prime
ideals need not be an n-absorbing ideal (Example 2.7). Section 3 continues the study
of basic properties of n-absorbing ideals. In particular, we discuss the relationship
between primary ideals and n-absorbing ideals and investigate when (7 :; x) is an
n-absorbing ideal of R for I a proper ideal of R.

In Section 4, we study the stability of n-absorbing ideals with respect
to various ring-theoretic constructions such as localization, factor rings, and
idealization. In particular, we determine the n-absorbing ideals in the direct product
of a finite number of rings (Corollary 4.8) and in integral domains of the form
D + XK[[X]], where D is a subring of a field K (Theorem 4.17). In Section 5, we
study n-absorbing ideals in several classes of commutative rings. For example, we
show that every proper ideal of a Noetherian ring is an n-absorbing ideal for some
positive integer n (Theorem 5.3) and that an ideal / of a valuation domain R is an
n-absorbing ideal of R if and only if 7 = P", where P = Rad(I) is a prime ideal of
R and 1 < m < n (Theorem 5.5). More generally, an ideal of a Priifer domain is an
n-absorbing ideal for some positive integer n if and only if it is a product of prime
ideals (Theorem 5.7). We also discuss for which positive integers n, a ring R has an
ideal which is n-absorbing, but not (n — 1)-absorbing.

In the final section, we study another generalization of prime ideal. We define
a proper ideal I of a ring R to be a strongly n-absorbing ideal if whenever I, ---1, | C
I for ideals Iy, ..., 1, of R, then the product of some n of the /;’s is contained
in 1. Thus a strongly 1-absorbing ideal is just a prime ideal. Clearly a strongly n-
absorbing ideal of R is also an n-absorbing ideal of R, and we conjecture that these
two concepts are equivalent (we show they are equivalent for Priifer domains in
Corollary 6.9). We also give several results relating strongly n-absorbing ideals to
earlier material. For example, we show that if 7 is a strongly n-absorbing ideal with
m(< n) minimal prime ideals Py, ..., P,, then P,"' --- P "» C I for positive integers
nys...,n, with n=n;+---+n, (Theorem 6.2), that the product of n maximal
ideals is a strongly n-absorbing ideal (Corollary 6.7), and that every proper ideal
of a Noetherian ring is a strongly n-absorbing ideal for some positive integer n
(Corollary 6.8).

As mentioned above, the concept of 2-absorbing ideals was introduced and
studied in [3]. In some cases, results about 2-absorbing ideals generalize in the
natural way to n-absorbing ideals for n > 3; in other cases they do not (see
Example 4.11(c) for instance). And in a few cases, we have been unable to determine
if results extend or not (see Theorem 4.15 and Section 6).

We assume throughout that all rings are commutative with 1 £ 0 and that
f(1) =1 for all ring homomorphisms f: R —> T. Let R be a ring. Then dim(R)
denotes the Krull dimension of R, Spec(R) denotes the set of prime ideals of R,
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Max(R) denotes the set of maximal ideals of R, T(R) denotes the total quotient ring
of R, qf(R) denotes the quotient field of R when R is an integral domain, Nil(R)
denotes the ideal of nilpotent elements of R, and Z(R) denotes the set of zero-
divisors of R. If I is a proper ideal of R, then Rad(l) and Min,(I) denote the radical
ideal of I and the set of prime ideals of R minimal over I, respectively. We will often
let 0 denote the zero ideal.

We start by recalling some background material. A prime ideal P of a ring R
is said to be a divided prime ideal if P C xR for every x € R\P; thus a divided prime
ideal is comparable to every ideal of R. An integral domain R is said to be a divided
domain if every prime ideal of R is a divided prime ideal.

An integral domain R is said to be a valuation domain if either x|y or y|x (in
R) for all 0 # x, y € R (a valuation domain is a divided domain). If 7 is a nonzero
fractional ideal of a ring R, then I=! = {x € T(R) | xI € R}. An integral domain R
is called a Dedekind (resp., Priifer) domain if II-' = R for every nonzero fractional
ideal (resp., finitely generated fractional ideal) I of R. Moreover, an integral domain
R is a Priifer domain if and only if R,, is a valuation domain for every maximal
ideal M of R. An integral domain R is called an almost Dedekind domain if R, is a
Noetherian valuation domain (DVR) for every maximal ideal M of R. An almost
Dedekind domain is a Priifer domain with dim(R) < 1. A ring R is a Bézout ring
if every finitely generated ideal of R is principal. As usual, for a nonzero fractional
ideal I of an integral domain R, we define I, = (I7')~! and say that I is divisorial
(or a v-ideal) if I, = 1.

Several of our examples use the R(+)M construction. Let R be a ring
and M an R-module. Then R(+)M = R x M is a ring with identity (1, 0) under
addition defined by (r, m) + (s, n) = (r + s, m + n) and multiplication defined by
(r, m)(s, n) = (rs, m + sm). Note that (0(+)M)> = 0; so 0(+)M < Nil(R(+)M). We
view R as a subring of R(+)M via r — (r, 0).

As usual, N, Z, Z,, Q, and R will denote the positive integers, integers,
integers modulo n, rational numbers, and real numbers, respectively. We define n +
oo = oo + 0o = oo for all n € Z. We will use “C” to denote proper inclusion. For any
undefined concepts or terminology, see [6, 8, 9], or [10].

2. BASIC PROPERTIES OF n-ABSORBING IDEALS

Let n be a positive integer. Recall that a proper ideal I of a ring R is an n-
absorbing ideal of R if whenever x, ---x,,, € I for x,,...,x,,; € R, then there are
n of the x,’s whose product is in /. In this section, we give some basic properties of
n-absorbing ideals. We start with several elementary results.

Theorem 2.1. Let R be a ring, and let m and n be positive integers.

(a) A proper ideal I of R is an n-absorbing ideal if and only if whenever x, ---x,, € I
for xi, ..., x, € R with m > n, then there are n of the x;’s whose product is in I.

(b) If I is an n-absorbing ideal of R, then I is an m-absorbing ideal of R for all m > n.

(¢) If I; is an n;-absorbing ideal of R for each 1 < j < m, then I, N---N 1, is an n-
absorbing ideal of R for n =n, + ---+ n,,. In particular, if P,, ..., P, are prime
ideals of R, then P, N ---N P, is an n-absorbing ideal of R.
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(d) If py, ..., p, are prime elements of an integral domain R, then I = p,---p,R is an
n-absorbing ideal of R.

(e) If I is an n-absorbing ideal of R, then Rad(l) is an n-absorbing ideal of R and
x" €I for all x € Rad(I).

Proof. The proofs of (a), (b), (c), and (d) are all routine, and thus they are omitted.

(e) Let I be an n-absorbing ideal of R. Hence x" € I for all x € Rad(I). Let

Xy X, € Rad(I) for x,,...,x,,; € R. Then x{---x | = (x;---x,,1)" € 1. Since
I is an n-absorbing ideal, we may assume that x}---x? € I. Thus (x;---x,)" =
x{---x" eI, and hence x, - --x, € Rad(I). Thus Rad(I) is an n-absorbing ideal of R.
O

Let I be a proper ideal of a ring R. In Theorem 2.1(b), we observed that
an n-absorbing ideal is also an m-absorbing ideal for all integers m > n. If I is
an n-absorbing ideal of R for some positive integer n, then define w,(/) = min{n |
I is an n-absorbing ideal of R}; otherwise, set wy(I) = oo (we will just write w([)
when the context is clear). It is convenient to define w(R) = 0. Thus for any ideal
I of R, we have w(l) € NU {0, oo} with w(/) =1 if and only if I is a prime ideal
of R and w(I) = 0 if and only if I = R. So w(I) measures, in some sense, how far /
is from being a prime ideal of R. When R is an integral domain and 0 # x € R, we
have w(xR) = w(x) as defined in [2, 7].

Remark 2.2. Secveral of the results in Theorem 2.1 may be recast using the w
function. For example, Theorem 2.1(c) becomes w(l, N---N1I,) <w(l})+---+
w(l,). In particular, o(P,N---NP,) <n when P, ..., P, are prime ideals of R.
Easy examples show that both inequalities may be strict. However, if P, ..., P, are
incomparable prime ideals of R, then w(P; N---N P,) = n. (Choose x; € P\ U, P;
for each 1 <i<n. Then x,---x, € P,N---NP,, but no proper subproduct of
the x;’s is in P,N---NP,. Thus w(P,N---NP,) >n.) Theorem 2.1(d) becomes
o(p,---p,R) = n, where p,,...,p, are prime elements of an integral domain R.
More generally, o(x,---x,R) > n for any nonzero, nonunits x; in an integral
domain R. Also, Theorem 2.1(e) may be restated as w(Rad(I)) < w(l). Again, easy
examples show that both inequalities may be strict.

We next give a very elementary example of a ring with proper ideals which are
not n-absorbing for any positive integer n. For other examples, see Examples 4.12,
4.18, and 5.6.

Example 2.3. Let R=][]-,Z,. Then R is a von Neumann regular ring (i..,
R is reduced with dim(R) =0). Let I, = {(x;,) € R| x;, =0 for 1 <i < n} for each
positive integer n, and let 7 = {(x;) € R| x5;_; = 0 for all i € N}. Then it is easily
verified that 7, and I are proper ideals of R with w(/,) = n for each positive integer
n and w(l) = co. Note that each I, is the product of » maximal ideals of R. It is also
easily verified that w(0) = co.

The first major result of this section (Theorem 2.5) is that an n-absorbing ideal
has at most n minimal prime ideals. We will need the following lemma.
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Lemma 2.4 ([9, Theorem 2.1, p. 2]). Let I C P be ideals of a ring R with P a prime
ideal. Then the following statements are equivalent:

(1) P is a minimal prime ideal of I,
(2) For each x € P, there is a 'y € R\P and a positive integer n such that yx" € I.

Theorem 2.5. Let I be an n-absorbing ideal of a ring R. Then there are at most n
prime ideals of R minimal over 1. Moreover, |Ming(I)| < wg(1).

Proof. We may assume that n > 2 since a l-absorbing ideal is a prime ideal.
Suppose that P, ..., P, are distinct prime ideals of R minimal over /. Thus for
each 1 <i < n, there is an x; € P\((Uyy Pr) U P,1y)- By Lemma 2.4, for each 1 <
i < n, there is a ¢; € R\P; such that ¢;x]" € I for some integer n;, > 1. Since I C P,
is an n-absorbing ideal of R and x; & P, for each 1 <i <n, we have cx'~' €]
for each 1 <i < n, and hence (¢; + - +¢,)x{"---x7" € I. Since x; € P\ (Ui Pr)
and cx}"' eI C P N---NP, for each 1 <i<n, we have ¢, € (N, P,)\P; for
each 1 <i<n, and thus ¢, +---+¢, &€ P; for each 1 <i <n. Hence (¢, +---+
) [ xp' & P, foreach 1 <i<njso(c;+---+¢,) [l ' ¢ 1foreach 1 <i<
n, and thus xi~'-..x""' € I C P, since I is an n-absorbing ideal of R. But then
x; € P, for some 1 <i < n, which is a contradiction. Hence there are at most n
prime ideals of R minimal over /.

The “moreover” statement is clear. O

Let n > m be positive integers. Then there is an n-absorbing, but not (n — 1)-
absorbing, ideal of a ring R that has exactly m minimal prime ideals. For example,
let n = 3. Then the ideals I, = 27Z, I, = 18Z, and I; = 30Z are 3-absorbing, but not
2-absorbing, ideals of Z with one, two, and three minimal prime ideals, respectively.
More generally, let p,,..., p,, € Z be distinct positive primes and n,,...,n,, be
positive integers with n =n, +---+n,,. Then I = p|'--- p'Z is an n-absorbing,
but not (n — 1)-absorbing, ideal of Z with exactly m minimal prime ideals, namely,
PZ,...,p,Z, ie., |Ming(I)| = m and w,(I) = n (cf. Theorems 2.1(d) and 2.9).

We have observed in Theorem 2.1(c) that the intersection of n prime ideals
of a ring R is always an n-absorbing ideal of R. We next investigate when the
product of n prime ideals of R is an n-absorbing ideal of R. Note that if P, ..., P,
are incomparable prime ideals of R, then (P, --- P,) > n. (Let x; € P\(U,, P;) for
each 1 <i <n. Then x,---x, € P, --- P,, but no proper subproduct of the x;’s is in
P,---P,.) Also, the proof of Lemma 2.8 shows that w(P") > n for P a prime ideal
of R with P"*!  P" (cf. Theorem 6.3). It has already been noted in Theorem 2.1(d)
that the product of n nonzero principal prime ideals in an integral domain R is
an n-absorbing ideal of R. The next theorem gives another trivial case where the
product of n prime ideals of R is an n-absorbing ideal of R (see Corollary 4.9 for a
generalization).

Theorem 2.6. Let P,,...,P, be prime ideals of a ring R that are pairwise
comaximal. Then [ = P, --- P, is an n-absorbing ideal of R. Moreover, o(I) = n.
Proof. Since the P;’s are pairwise comaximal, we have / =P,---P, =P, N---N
P,. Thus [ is an n-absorbing ideal of R by Theorem 2.1(c).
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The “moreover” statement follows from comments in Remark 2.2 since
P,, ..., P, are incomparable. O

In general, the product of n > 2 prime ideals of a ring R need not be an n-
absorbing ideal of R. We have the following examples. However, see Corollary 4.4.

Example 2.7. (a) Let R=Z[X,Y|+6ZZ[X,Y,Z] CZ[X,Y,Z]. Then P, =
XZ[X, Y]+ 6ZZ[X,Y,Z]l and P, = YZ[X, Y] + 6ZZ[X, Y, Z] are incomparable prime
ideals of R. However, I = P, P, is not a 2-absorbing ideal of R since 2-3-6Z* € I,
but 2-3¢1,2-6Z>¢1, and 3-6Z* ¢ I. Similarly, P} and P are not 2-absorbing
ideals of R.

(b) Let R=Z[X,Y,Z]. Then P, =(2,X),P,=(2,Y), and P,=(2,2)
are incomparable (nonmaximal) prime ideals of R. However, [ = P,P,P; =
(8,4X,4Y,47,2XY,2XZ,2YZ, XYZ) is not a 3-absorbing ideal of R. To see this, let
f1=2,=X4+Y+2, f;=X+Z+2,and f, =Y+ Z+ 2. Then f,f,f5fs € I, but
no product of any 3 of the f;’s is in I. (Note that every ideal of R is an n-absorbing
ideal for some positive integer n by Theorem 5.3.)

(c) We next generalize part (a). Let m and n be integers with 2 <n <

m, and let p,,...,p, € Z be the first m positive primes. For ¢, = p,---p,.. let
R=Z[X,,....X,|+¢,YZ[X,,...,X,, Y], a subring of Z[X,,...,X,,Y], and let
P,=XZX,,....X,]+q,YZ[X,,...,X,, Y] foreach ]l <i<n.ThenP,,..., P, are

incomparable prime ideals of R. However, I = P, --- P, is not an m-absorbing ideal
of R (and hence / is also not an n-absorbing ideal of R). To see this, let g% = ¢g"~'Y".
Then p, ---p,q. = (g,Y)" € I, but no proper subproduct is in /. Similarly, let J =
P;' ... P" for integers n, > 0 with n =n, +---+ n,; then J is not an m-absorbing
ideal of R.

(d) More generally, one can ask how w(1J), w(I), and w(J) compare when
I and J are proper ideals of a ring R. If I and J are comaximal, then w(lJ) =
o(I) + w(J) by Corollary 4.9. However, the two examples above show that we may
have w(lJ) > o(I) + w(J) even when I and J are prime ideals of R. We may also
have w(1J) < w(I) + w(J). This is trivially true if / = J is an idempotent prime ideal
of R. For a less trivial example, let P C Q be nonzero prime ideals of a valuation
domain R. Then it is easy to verify that PQ = P, and thus o(PQ) =1 < 2 = o(P) +
o(Q). We have already observed that for incomparable prime ideals P and Q of
R, we have w(PQ) > 2 = w(P) + w(Q). Also, for any integral domain R, we have
w(xyR) < w(xR) + w(yR) for all 0 # x, y € R by [2, Theorem 2.3].

If My, ..., M, are distinct maximal ideals of a ring R, then / = M, --- M, is an
n-absorbing ideal of R by Theorem 2.6. We next show that the product of any n
maximal ideals of R is an n-absorbing ideal of R, but first we show that M” is an
n-absorbing ideal of R for any maximal ideal M of R (cf. Theorem 3.1). Note that
we may have w(M") < n. For example, this would happen if M* = M**! for some
integer k with 1 <k <n — 1 (cf. Remark 6.4(a)).

Lemma 2.8. Letr M be a maximal ideal of a ring R and n a positive integer. Then M"
is an n-absorbing ideal of R. Moreover, w(M") < n, and w»(M") = n if M"*' C M".
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Proof. Let x---x,,, € M" for x;,...,x,,, € R. If x,...,x,, € M, then we are
done; so we may assume that x,,, ¢ M. Then (M", x,,,) =R;soy+x,,,z=1 for
some ye M" and z € R. Thus x;---x, = (x;---x,)l = (x;---x,)y+ (x,---x, )z €
M", and hence M" is an n-absorbing ideal of R.

The first part of the “moreover” statement is clear. Now suppose that M™! C
M". Then there are x|, ..., x, € M such that x, ---x, € M"\M"*'. Thus no product
of n — 1 of the x;’s is in M" since otherwise x, - -- x, € M"™!, a contradiction. Hence
M" is not an (n — 1)-absorbing ideal of R, and thus w(M") = n since we showed
above that M" is an n-absorbing ideal of R. |

Theorem 2.9. Let My, ..., M, be maximal ideals of a ring R. Then I = M, ---M, is
an n-absorbing ideal of R. Moreover, o(I) < n.

Proof. We show that if M,, ..., M,, are distinct maximal ideals of R and n,, ..., n,
are positive integers with n = n, + --- + n,,, then I = M{" --- M is an n-absorbing
ideal of R. By Lemma 2.8, each M;" is a n;-absorbing ideal of R. Thus I =
M M" = M;"N---N M" is an n-absorbing ideal of R by Theorem 2.1(c).
The “moreover” statement is clear. O

Our next goal (Theorem 2.14) is to show that if an n-absorbing ideal / has
exactly n minimal prime ideals, say P, ..., P,, then P,---P, C I (S P,N---NP,).
Note that an n-absorbing ideal 7 of R has exactly » minimal prime ideals if and only
if |Ming(I)| = wg(I) = n by Theorem 2.5. First an example and two lemmas.

Example 2.10. Let P,,..., P, be incomparable prime ideals of a ring R, and
let =P N---NP,. Then Rad(l)=1,o(l)=n, and P,---P, < I=P, N---NP,.
However, the inclusion may be strict. For example, let R = Z[X, Y], P, = (2, X), and
P, =(2,Y). Then (4,2X,2Y,XY) =P, P, CI =P, NP,since 2 € I\P,P,.

Lemma 2.11. Let n> 2 and Py, ..., P, be incomparable primes ideals of a ring R,
and let I be an n-absorbing ideal of R contained in P, N ---NP,. If x| ---x"™ € I for
positive integers m; and x; € P\(U,; Py), then x;---x, € I.

Proof. Since I is an n-absorbing ideal of R, we have x)'---x* eI for integers
ky,...,k, with each 0 <k, <m; and k, +---+ k, = n. If some k; =0, say k, =
0, then x’f ---xkn e I C Py, a contradiction since x; ¢ P, for each 2 <i < n. Thus
Xy o-x, €1. g

In the following results, we use the notation P;[].; c; to represent the set of
all products of the form a[]; c;, where a € P;.

Lemma 2.12. Let n > 2 and I be an n-absorbing ideal of a ring R such that I has
exactly n minimal prime ideals, say P, ..., P,. Let | < j < n, and for every i # j with
1 <i<mn, letc;e P\(Upy Pr)- Then P;[]iz;c; €1

Proof. Let a € P,. If a € P\(U,y; P;), then a[],,;c; € I by Theorem 2.1(e) and
Lemma 2.11. Now suppose that a € P; N (U, P;)- Let d € P\(U;y; P;). We will
find an element b € R such that bd +a € P\(U;x; P;)). Let F={m|a ¢ P, for
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l<m<n},D={m|aecP,forl<m<nm#j}, b=[lierc, let b=1if F=
#), and x = bd + a. Since d [|;.r ¢, € P,, and a & P,, for every m € F, we have x ¢
P, for every m € F. Since a € P,, for every m € D and d [],.r ¢, € P,, for every m €
D, we have x ¢ P, for every m € D. Thus x € P\(U; P;), and hence x[],,;¢; € I
and d[],;;c; € I as above. Thus ([,cr ¢ )(d ][]y ) +alliy;c; = x[liyjc; €1, and
hence a[];c; € I. Thus P[], c; € I. g

In view of the proof of Lemma 2.12, we have the following corollary.

Corollary 2.13. Let n>2 and P,, ..., P, be incomparable prime ideals of a ring R.
Let a € P; for some 1 < j < n. Then there is an element d € P\(U,z, P;) and b € R
such that bd + a € P\(U,y, P)).

We are now ready for the main result of this section. Example 2.10 shows that
the inclusion in Theorem 2.14 may be proper, while Corollary 2.15 gives several
cases where equality holds.

Theorem 2.14. Let I be an n-absorbing ideal of a ring R such that I has exactly n
minimal prime ideals, say Py, ..., P, Then P,---P, C I. Moreover, o(I) = n.

Proof. We may assume that n > 2 since a l-absorbing ideal is a prime ideal.
Let a; € P; for each 1 <i < n. Then a,[],.;., ¢; € I for any choices ¢, € P\(P,U
(U#i Pj)), 2<i<n, by Lemma 2.12. Now suppose that for some 1 <k <
n—1, we have that (a;---a)[]gs1)<i<nc; €1 for any choices ¢; € P\(P; U
(Ujxi P))s k+1<i<n; we will show that (a,---a;,) [pi2)<icn ¢; € I for any
choices ¢; € P\(P, U (U4 P;)), k+2 <i < n. By Corollary 2.13, there is a d;, €
Pi\(Ujz1 P)) and by € R such  that by diyy + agyy € Py \(Ujzeqr P))-
Put ¢, = bdi +ai,. Then by assumption, we have ((by,a;---apd;,)
[Ty <i<n )+ (@ @) sa)<icn €) = (a1 @) (b1 diiy + @ D 42 <ien €6 =
(a---ay) [Ts1)<i<n € € 1. Since dy iy € Pk+1\(Ui;ék+1 P,), we have (b a; - a;diy)
[Ts2)<icn€; € I by assumption, and hence (a;--- @) [lpio<icnci € 1. In
particular, if k=n—1, then (a,---a,_,)(b,d,+a,) €1, and thus a,---a, € I.
Hence P,---P, C I

For the “moreover” statement, we have w(l) < n since I is an n-absorbing
ideal of R. For the reverse inequality, choose x; € P,\(U,y P;) for each 1 <i < n.
Then x,---x, € P,--- P, € I by above. However, if some proper subproduct of the
x;’sisin I, say x,---x, € [ € P, then x; € P, for some 2 < i < n, a contradiction.
Thus w(I) = n. |

Corollary 2.15. Let I be an n-absorbing ideal of a ring R such that I has exactly
n minimal prime ideals, say Py, ..., P,. If the P;’s are comaximal, then [ = P ---P,.
Moreover, w(I) = n. In particular, this holds if either each P; is maximal, dim(R) = 0,
or R is an integral domain with dim(R) < 1.

Proof. Wehave P,---P, I C P, N---NP, by Theorem 2.14 and P,N---NP, =
P, --- P, since the P,’s are comaximal. Thus I = P, --- P,.
The “moreover” and “in particular” statements are clear. |
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Corollary 2.16. Let I be an n-absorbing ideal of a ring R such that I has exactly n
minimal prime ideals, say Py, ..., P, Then Ip =P, (in Rp) forall 1 <i < n.

Proof. 1If n =1, then I is a prime ideal; so we may assume that n > 2. Let 1 <i <
n. Clearly, I, C P;, (in Rp). For the reverse inclusion, let x € P;. For every 1 < j <
n such that j # i, let ¢; € P\(Up, Py); then ¢ =[],.;c; € R\P,. Since P, --- P, C I
by Theorem 2.14, we have cx € I. Thus x/s = cx/cs € I, for all s € R\P;, and hence
Ip = PiP‘_. (For an alternate proof, just localize the inclusion P, --- P, € I C P; at P,.)

O

In Section 6, we consider the case when |Ming(I)| < wg(I), and we conjecture
that if 7 is an n-absorbing ideal of a ring R such that / has exactly m minimal prime
ideals Py, ..., P, (m < n by Theorem 2.5), then P," --- P, C I for positive integers
ny,...,n, withn=n; +---+n,, (see Theorem 6.2).

3. BASIC PROPERTIES OF n-ABSORBING IDEALS, II

In this section, we continue the study of basic properties of n-absorbing
ideals begun in the previous section. We first consider the relationship between
n-absorbing ideals and primary ideals. Our next result is a generalization of
Lemma 2.8 since any power of a maximal ideal M is M-primary (also see
Theorem 6.3, Remark 6.4(a), and Theorem 6.6).

Theorem 3.1. Let P be a prime ideal of a ring R, and let I be a P-primary ideal
of R such that P" C I for some positive integer n (for example, if R is a Noetherian
ring). Then I is an n-absorbing ideal of R. Moreover, w(I) < n. In particular, if P"
is a P-primary ideal of R, then P" is an n-absorbing ideal of R with w(P") < n, and
o(P") = n if P"! c P

Proof. Let x---x,,; €1 for x,,...,x,.; € R. If one of the x,’s is not in P, then
the product of the other x;’s is in [ since / is P-primary. Thus we may assume that
every x; is in P. Since P" C I, we have x, ---x, € I. Hence I is an n-absorbing ideal
of R.

The “moreover” and first part of the “in particular” statements are clear. The
fact that w(P") = n if P"*! C P" follows from the proof of the “moreover” statement
in Lemma 2.8. O

The hypothesis that P" C I for some positive integer n is needed in the above
theorem since a primary ideal need not be an n-absorbing ideal for any positive integer
n, see Example 5.6(a). Conversely, an n-absorbing ideal I with Rad(I) = P a prime
ideal need not be a P-primary ideal since every ideal in a Noetherian ring is an n-
absorbing ideal for some positive integer n (Theorem 5.3), but an ideal with prime
radical in a Noetherian ring need not be primary [10, Exercises 11 and 12, pp. 56-57].
In [3, Example 3.11], an example is given of a prime ideal P of a ring R such that P? is
a 2-absorbing ideal of R, but P? is not P-primary (also, see Example 4.11(d)). We next
give a sufficient condition for an n-absorbing ideal to be primary.

Theorem 3.2. Let P be a divided prime ideal of a ring R, and let I be an n-absorbing
ideal of R with Rad(I) = P. Then I is a P-primary ideal of R.
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Proof. Let xy e I for x,y € Rand y ¢ P. Then x € P, and thus x = y"'z for some
z € R since P C y""'R because P is a divided prime ideal of R and y*~' ¢ P. As y'z =
yx €I, y" €I, and I is an n-absorbing ideal of R, we have x = y"~'z € I. Hence [ is
a P-primary ideal of R. |

A special case of the next result is when P is a nonzero divided prime ideal in
an integral domain R.

Theorem 3.3. Let Nil(R) C P be divided prime ideals of a ring R. Then P" is a
P-primary ideal of R, and thus P" is an n-absorbing ideal of R with w(P") < n, for
every positive integer n. Moreover, o(P") = n if P"*' c P".

Proof. We show that P" is a P-primary ideal of R. Then P" is also an n-absorbing
ideal of R by Theorem 3.1. Note that Nil(R) C P" since Nil(R) is a divided prime
ideal of R and Nil(R) C P. Let xy € P" for x,y € R and y & Rad(P") = P. Then
xy =z -2, with each z;; € P. Since P C yR because P is a divided prime ideal
of R, each z;; = zj;y with zj; € P. Thus xy = zy with z € P". Then y(x —z) =0 €
Nil(R) implies x — z € Nil(R) C P". Hence x € P" as desired.

The “moreover” statement follows from Theorem 3.1. |

Let I be a proper ideal of a ring R. For x e R, let I, ={yeR|yxel} =
(I :x x). We next investigate when [, is an n-absorbing ideal of R. In particular,
o(l,) < o(l) by Theorem 3.4. Example 4.11(b) and (c) show that this inequality
may be strict for x € Rad(I)\I. These results generalize corresponding results for
2-absorbing ideals in [3].

Theorem 3.4. Let I be an n-absorbing ideal of a ring R. Then I, = (I :y x) is an
n-absorbing ideal of R containing I for all x € R\I. Moreover, w(I,) < w(I) for all
X €R.

Proof. Leta,---a,., €1, fora,,...,a,, €R.Then (xa,)a,---a,,, €1, and thus
either a,---a, ., € I or the product of xa, with n — 1 of the g;’s for 2 <i<n+1
is in /. In either case, there is a product of n of the a;’s that is in 7. Thus 7, is an
n-absorbing ideal of R. Clearly, I C I..

The “moreover” statement is clear if x € R\I by above. If x € I, then I, = R,
and hence w(1,) = 0 < w(]). O

Theorem 3.5. Let n>2 and I C Rad(I) be an n-absorbing ideal of a ring R.
Suppose that x € Rad(I)\1, and let m(> 2) be the least positive integer such that x" €
1. Then I 1 = (I :p x™ ') is an (n — m + 1)-absorbing ideal of R containing I.

Proof. First note that 2 < m < n since I is an n-absorbing ideal of R; so n —
m+1>1. Clearly I € I... Let a;---a,_,,» € L1 for a,...,a,_,,, € R. Since

x"'a,---a,_,., €I and I is an n-absorbing ideal of R, either the product of x"~!

with some n —m + 1 of the a;’s is in I or x"?a,---a,_,, € I. If the product of

x"~1 with some n— m + 1 of the a;’s is in I, then we are done. Hence assume
that the product of x"~! with any n —m+1 of the ;s is not in I, and thus
m—2 m—2

xX"a,;---a , € 1. Since xx"*a,---a,_,.(a,_,.»+x) €I and the product of

n—m+
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x™~! with any n —m + 1 of the a;’s is not in /, we must have x"?a,---a,_, ., +

m—1 __ ym=2 m—2
X al e anfmwtl =X al e a,,,m+] (an7m+2 + .X) € I AS X al e an7m+2 € I? we

have x"'a,---a,_,,, €1, a contradiction since we assumed that the product of
x™~! with any n — m + 1 of the @,’s is not in 1. Thus the product of x"~! with some
n—m+ 1 of the a@,’s is in I, and hence I,.-1 is an (n — m + 1)-absorbing ideal of R

containing /. O

Corollary 3.6. Let n>2 and I C Rad(I) be an n-absorbing ideal of a ring R.
Suppose that x € Rad(I)\I and x" € I, but x"' & I. Then I ... = (I :x x"~") is a prime
ideal of R containing Rad(I).

Proof. Note that I, is an (n —n+ 1)-absorbing ideal of R containing / by
Theorem 3.5, and thus /,..1 is a prime ideal of R containing Rad([). |

Corollary 3.7. Let n> 2 and I be an n-absorbing P-primary ideal of a ring R for
some prime ideal P of R. If x € Rad(I)\I and n is the least positive integer such that
x" €1, then I, = (I:x x" ') =P.

Proof. By Corollary 3.6, we have P = Rad(l) C I.1. Let y € I.-1; so x" 'y el
Since I is a P-primary ideal and x"~! ¢ I, we have y € P. Thus I,.; = P. O

The next two theorems concern when (I :; x) contains a subproduct of the
minimal prime ideals of 1.

Theorem 3.8. Let n > 2 and I C Rad(l) be an n-absorbing ideal of a ring R such
that I has exactly n minimal prime ideals, say P,, ..., P,. Suppose that x € Rad(I)\I,
and let m(> 2) be the least positive integer such that x™ € I. Then every product of
n—m+ 1 of the P,’s is contained in I, = (I ;g x™7").

Proof. Note that m<n; so n—m+1>1. Let F={Q,,...,0,,} CG=
{P,,...,P,} and D= G\F. Then D contains exactly n —m + 1 of the P,’s. Since
x € Rad(I)\I, we have x € Q, forevery 1 <i <m — 1. Since x" ' € Q,---Q,, ; and
(IMger O)(I1pep P) = P+ -+ P, € I by Theorem 2.14, we have x" ' [[,., P € I, and
thus [Tpep P S Lnt. O

The proof of the following result is similar to that of Theorem 3.8.

Theorem 3.9. Let n > 2 and I C Rad(l) be an n-absorbing ideal of a ring R such
that I has exactly n minimal prime ideals, say Py, ..., P,. If x € Rad(I)\I, then every
product of n — 1 of the P;’s is contained in I, = (I : x).

Note that the ideal / in the next result is an n-absorbing ideal of R by
Theorem 3.1.

Theorem 3.10. Let I be a P-primary ideal of a ring R such that P" C I for some
positive integer n (for example, if R is a Noetherian ring), and let x € P\I. If x" & I
for some positive integer m, then (I :p x™) = L., is an (n — m)-absorbing ideal of R.
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Proof. First note that m < n since P* C I;so n —m > 1. Clearly, I, is a P-primary
ideal of R. We have x"P"" C [ since P" C I, and thus P"" C I... Hence 1. is an

X

(n — m)-absorbing ideal of R by Theorem 3.1. |

4. EXTENSIONS OF n-ABSORBING IDEALS

In this section, we investigate the stability of n-absorbing ideals in various
ring-theoretic constructions. The first two theorems and corollary generalize well-
known results about prime ideals and follow directly from the definitions; so their
proofs are omitted.

Theorem 4.1. Let I be an n-absorbing ideal of a ring R, and let S be a
multiplicatively closed subset of R with 1 NS = (. Then I is an n-absorbing ideal of
Rg. Moreover, wg (I5) < wg(I).

Theorem 4.2. Let f: R —> T be a homomorphism of rings.

(a) Let J be an n-absorbing ideal of T. Then f~'(J) is an n-absorbing ideal of R.
Moreover, wx(f~1(J)) < ws(J).

(b) Let f be surjective and I be an n-absorbing ideal of R containing ker(f). Then f(I)
is an n-absorbing ideal of T if and only if I is an n-absorbing ideal of R. Moreover,
w7 (f()) = wg(]). In particular, this holds if f is an isomorphism.

Corollary 4.3.

(a) Let R C T be an extension of rings and J an n-absorbing ideal of T. Then J N R is
an n-absorbing ideal of R. Moreover, wgx(J N R) < w,(J).

(b) Let I € J be ideals of a ring R. Then J is an n-absorbing ideal of R if and only if
J/1 is an n-absorbing ideal of R/1. Moreover, wg, (J/I) = wg(J).

We have seen in Example 2.7 that the product of n prime ideals of a ring R
need not be an n-absorbing ideal of R. However, we do having the following result.

Corollary 4.4. Let P,,...,P, be incomparable prime ideals of a ring R, I =
P/ - P" for positive integers n, ...,n, with n=n,+---+n,, and S = R\(P, U

-+UP,). Then S(I) = {x € R | x/1 € I} is an n-absorbing ideal of R. In particular,
P™ is an n-absorbing ideal of R for P a prime ideal of R. Moreover, w(S(I)) < w(I)
and w(P™) < w(P").

Proof. Let f:R — Rg be the natural homomorphism f(x) = x/1. Then
(P)s, ..., (P,)s are maximal ideals of Ry, and thus Iy = (P/'---P')s is an
n-absorbing ideal of Ry by Theorem 2.9. Hence S(I) = f~'((P,"--- P')g) is an
n-absorbing ideal of R by Theorem 4.2(a).

The “in particular” statement is clear since P = S(P"). For the “moreover”
statement, note that wg(S(1)) < wg (I5) < wg(l) by Theorem 4.2(a) and
Theorem 4.1, respectively. Thus we also have w(P™) < w(P"). O

The next corollary generalizes [2, Corollary 3.2], which gave the special case
when I = (P,---P,), is a principal ideal of a Krull domain R. A consequence of
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the following corollary is that every proper divisorial ideal of a Krull domain is an
n-absorbing ideal for some positive integer n.

Corollary 4.5. Let R be a Krull domain and Py, ..., P, be ht-one prime ideals of R.
Then I = (P, ---P,), is an n-absorbing ideal of R. Moreover, o(I) = n.

Proof. LetP,---P,= Q)" ---Q;* for distinct height-one prime ideals Q,, ..., Q, of
R and positive integers n,, ..., n, with n =n, +---+n,. Then I = (Q}' --- 0}), =
0" N...n Q"™ by [6, Corollary 5.7, p. 26], and thus / is an n-absorbing ideal of
R by Corollary 4.4 and Theorem 2.1(c).

For the “moreover” statement, we have w(l) < n by above. Let S = R\(Q, U
-+-U Q,). Then Ry is a principal ideal domain (PID) [6, Corollary 13.4, p. 58] and
I, is the product of n principal prime ideals of Rg; so wg (I5) = n. Hence n < w(I)
by Theorem 4.1, and thus (/) = n. d

The next example shows that the inequalities in the above results may be strict.

Example 4.6. (a) The inequality in Theorem 4.1 may be strict. Let the ring R
and the ideals 7 and I, be as in Example 2.3. Note that R, is a field for every
maximal ideal M of R since R is a von Neumann regular ring. Since I and each I, are
proper ideals of R, we have I € M and each I, € M, for maximal ideals M and M,
of R. Thus wp, (1,, ) =1 <n = wg(l,) for each integer n > 2 and wy (1) =1 <
oo = wg(I). Also, let / = 0. Then w(J) = co > 1 = sup{w(J,,) | M € Spec(R)}, i.e., a
locally prime ideal need not be an n-absorbing ideal for any positive integer n.

(b) The inequality in Theorem 4.2(a) (and Corollary 4.3(a)) may be strict.
Let R=Q[X] C T = Q[X, Y] and J = (X, Y?) be an ideal of T. Then w;(J) =2 by
Theorem 3.1. However, JN R = XR; s0 wx(JNR) =1 <2 =w;(J).

(¢) In Theorem 4.2(b), it is necessary to assume that ker(f) C 1. Let R =
Q[X, Y], T = Q[X], and f: R —> T be the surjective ring homomorphism given by
f(g(X,Y)) = g(X,0) for all g(X,Y) € R. For I, = (X* + Y)R, we have f(I,) = X*T,
and thus w,(1)) =1 <2 = w,(f(,)). For I, = (X, Y?), we have f(I,) = XT, and
hence wg(l,) =2 > w(f(I,)) = 1. Note that ker(f) = YR is not contained in either
I, or I,.

(d) The inequalities in Corollary 4.4 may also be strict. Let the ring R, the
prime ideals P, and P,, and I = P, P, be as in Example 2.7(a). Then o(S(1)) =2 <
o(l) and o(PY) =2 < w(P?).

We next determine the n-absorbing ideals in the product of two, and hence
any finite number of, rings. This generalizes the well-known result that the prime
ideals of R, x R, have the form R, x P, or P, x R, for P, a prime ideal of R;. Recall
that an ideal of R, x R, has the form I, x I, for ideals I, of R;.

Theorem 4.7. Let I, be an m-absorbing ideal of a ring R, and I, an n-absorbing ideal
of a ring R,. Then I, x I, is an (m + n)-absorbing ideal of the ring R, X R,. Moreover,
g, xr, (I} X 1)) = o (I}) + wg, (1).
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Proof. Let T =R, xR,; we show that wr(l; x ) = wg, (I}) + wg, (). First
suppose that wg (1;) = m < o0 and wy, (I;) = n < co (we may assume that m, n > 1).
Then there are x,,...,x, € R, and y,,...,y, € R, such that x,---x, € I} and
y; -y, € I,, but no proper subproduct of the x,’s is in /; and no proper subproduct
of the y;’s is in I,. Thus (x;, 1)---(x,, D(L,y) - (1, y,) = (x; - x,, y - y,) €
I, x I, but no proper subproduct is in I; x I,. Hence w;(I; x ) >m+n=
wp, (1)) + wg, (). Next, let N=m+n+ 1 and suppose that (x;, y;) - (xy, yy) €
Iy x I, for (x;,y;)€T. Then x,---xye€l, and y ---yy€l; so there are
{iv,..ibs s dup € {1, ..., N} such that x; ---x; €, and y; ---y;, €L,
Let K={i,....0,JU{ji,. s j.}; s0 |K| <m+n. Thus [[ex(xy, y) €1 X I;
so or(l; x L)) <m+n=awg (I,) + wg, (). The above proof also shows that
wr(I; x L) is infinite if and only if either wg (1)) or wg, (1) is infinite. Hence
r(ly x ) = wg (1)) + og, (1) 0

Corollary 4.8. Let I, be an ideal of a ring R, for each integer 1 <k < n, and let
R=R; x -+ xR, Then wp(l; x -+ x1,) = wp (I;) + -+ wg (I,).

Corollary 4.9. Ler I,,...,1I, be pairwise comaximal ideals of a ring R. Then
olyn---NL)=ol---1,)=ol)+- -+ ao,). In particular, o(M{"* --- M*) =
o(M{") + -+ o(M*) for distinct maximal ideals M, ..., M, of R and positive
integers ny, ..., n.

Proof. 1t is sufficient to do the n = 2 case; so let I and J be comaximal ideals of R.
Since I and J are comaximal, we have R/IJ = R/I x R/J by the Chinese Remainder
Theorem and 1J =1NJ. Thus wx(I NJ) = wx(l)) = wg;;(0) = @g/p.p/;(0 x 0) =
0g1(0) + wg,;(0) = wg(I) + wi(J) by Corollary 4.3 and Theorem 4.7.

The “in particular” statement is clear. O

Let R be a ring, M be an R-module, and T = R(+)M. If I is an n-absorbing
ideal of R, then it is easy to show that I/(+)M is an n-absorbing ideal of 7. In fact,
wr(I(+)M) = wx(I). We have the following result for the special case T = R(+)R,
where R is an integral domain.

Theorem 4.10. Let D be an integral domain, R = D(+)D, and I be an n-absorbing
ideal of D that is not an (n — 1)-absorbing ideal of D. Then 0(+)I is an (n+ 1)-
absorbing ideal of R that is not an n-absorbing ideal of R; so wgx(0(+)) = wp() + 1.
In particular, if P is a prime ideal of D, then O(+)P is a 2-absorbing ideal of R.

Proof. Since I is an n-absorbing ideal of D that is not an (n — 1)-absorbing
ideal of D, there are d,,...,d, € D such that d,---d, € I and no product of
n—1of the d’s is in I. Let b; = (d,0),...,b, = (d,.0), and b, ; = (0, 1). Then
by---b,,=(0,d;---d,) € 0(+)I, and it is clear the no product of n of the b,;’s is
in 0(+)I. Thus 0(4)I is not an n-absorbing ideal of R. Next we show that 0(+)/
is an (n + 1)-absorbing ideal of R. Let ¢; = (a;, m;), ..., ¢, 0» = (a,15, M) €R
such that ¢;---¢,,, € 0(+)I. Since Rad(0(+)I) = 0(+)D is a prime ideal of R, at
least one of the ¢;’s is in 0(4+)D, say ¢; = (0, m) € 0(+)D. Hence ¢;---¢,.n =
(0, ma,---a,,,) € 0(+)I, and thus ma,---a,,, € I. Hence either the product of
m,; with n — 1 of the a,’s is in I or the product of n of the a,’s is in I; so either the
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product of ¢; with n — 1 of the ¢,’s (i # 1) is in 0(+)I or the product of n of the
¢;’s (i #1) is in 0(4)I. Thus 0(+)7 is an (n + 1)-absorbing ideal of R, and hence
or(0(+H)) =n+1.

The “in particular” statement is clear. |

The following example illustrates the previous theorem.

Example 4.11. Let R = Z(+)Z.

(a) Let I=p,---p,Z, where p,,...,p, € Z are (not necessarily distinct)
positive primes. Then 7 is an n-absorbing ideal of Z that is not an (n — 1)-absorbing
ideal of Z. Thus 0(+)7 is an (n + 1)-absorbing ideal of R that is not an n-absorbing
ideal of D by Theorem 4.10; so w,x(0(+)]) = w,() + 1 =n+ 1.

(b) Let p € Z be a positive prime. Then J = 0(+)pZ is a 2-absorbing ideal
of R by Theorem 4.10 with Rad(J) = 0(4+)Z. For every x € Rad(J)\J, we have
J. = (J:x x) = (pZ)(+)Z, a prime ideal of R. Thus w(J,) =1 < 2 = w(J) for every
x € Rad(J)\J.

(c) If Iis a 2-absorbing ideal of a ring 7' and x, y € Rad(I)\I, then I, and I,
are linearly ordered prime ideals of 7 by [3, Theorems 2.5 and 2.6]. However, this
need not be true if 7 is an n-absorbing ideal of a ring 7 and n > 3. Let p,, p, € Z
be distinct positive primes. Then J = 0(+)p,p,Z is a 3-absorbing ideal of R that
is not a 2-absorbing ideal of R = Z(+)Z by Theorem 4.10 with Rad(J) = 0(+)Z.
Let x = (0, n) € Rad(J)\J. Then J, = (p,p,Z)(+)Z and w(J,) =2 if n € Z\(p,Z U
pZ). J, = (p/Z)(+)Z and o(J,) =1 if n € p,Z\p,p,Z, and J, = (p,Z)(+)Z and
o(J,) = 1if n € p,Z\p,p,Z, and these ideals are not linearly ordered. Thus, w(J) =
3, while w(J,) is either 1 or 2 for all x € Rad(J)\J.

(d) Let I be a P-primary ideal of a ring 7 such that P"™ C I for some
positive integer m. If I is an n-absorbing ideal of T that is not an (n — 1)-absorbing
ideal of T, then w;(I) = n < m by Theorem 3.1. However, by (a) above, for every
integer n > 2, the ring R = Z(+)Z and ideal I, = 0(+)(p, - - - p,_1Z) of R have P =
Rad(l,) = 0(+)Z a prime ideal of R such that P> C I, and wg(I,) = n (so I, is not
P-primary when n > 3).

Let T be a ring extension of an integral domain D and P a prime ideal
of D. Then 0(+)P need not be a 2-absorbing ideal of the ring R = D(+)T; so
Theorem 4.10 does not extend to general R. We have the following example.

Example 4.12. Let R = Z(+)@Q. Then I = 0(+)2Z is an ideal of R with Rad(I) =
0(+)@Q. Let x = (0, 1) € Rad(D\I. Then I, = (I :; x) = (4Z)(+)Q is not a prime
ideal of R (w(I,) = 2), and hence [ is not a 2-absorbing ideal of R by [3, Theorem
2.8]. In fact, one can easily show that I is not an n-absorbing ideal of R for any
positive integer n. For each positive integer n, let x; = (2,0) for 1 <i<nandx, | =
(0, 21—,1) Then x, ---x,,; = (0,2) € I, but no proper subproduct of the x;’s is in I.
Thus wg (1) = co.

We next briefly consider extensions of n-absorbing ideals of R in the
polynomial ring R[X].
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Theorem 4.13. Let I be an ideal of a ring R. Then (I, X) is an n-absorbing ideal of
R[X] if and only if I is an n-absorbing ideal of R. Moreover, gy ((1, X)) = wg(I).

Proof. This follows directly from Corollary 4.3(b) since (I, X)/(X) =1 in
R[X]/(X) = R.
The “moreover” statement is clear. O

It is also natural to ask if g (/[X]) = wg(1). This is well known if / is a prime
ideal of R, and we conjecture that the equality holds for all ideals 7 of R. While we
have been unable to prove the general result, we next show that 7 is a 2-absorbing
ideal of R if and only if /[X] is a 2-absorbing ideal of R[X]. But first, we need the
following trivial lemma.

Lemma 4.14. Let I be an ideal of a ring R and suppose that x + y € I for some x,y €
R. Then I, = I, (recall that I, = (I :x x)).

Theorem 4.15. Let I be an ideal of a ring R. Then I[X] is a 2-absorbing ideal of
R[X] if and only if I is a 2-absorbing ideal of R.

Proof. If I[X] is a 2-absorbing ideal of R[X], then [ is a 2-absorbing ideal of R by
Corollary 4.3(a).

Conversely, suppose that [ is a 2-absorbing ideal of R. Recall that I[X] is a
prime ideal of R[X] if and only if 7 is a prime ideal of R. Thus we may assume that /
is not a prime ideal of R. Since either Rad(l) = P is a prime ideal of R or Rad(l) =
P, N P, for prime ideals P, P, of R with P, P, C I by [3, Theorem 2.4], we conclude
that either Rad(I[X]) = P[X] or Rad(I[X]) = P,[X] N P,[X] with P,[X]P,[X] C I[X].
Now let f(X) = a,X" +--- 4+ ay, € Rad(I[X])\I[X]. By [3, Theorems 2.8 and 2.9], it
suffices to show that /[X] .y, is a prime ideal of R[X]. Without loss of generality, we
may assume that a; ¢ I for all 0 <i < n. Since LysLyys o5 1, are linearly ordered
prime ideals of R by [3, Theorems 2.5 and 2.6], there is a k with 0 < k < n such
that 1, € 1, for every i, 0 <i < n. We show that I[X]y, = I, [X] is a prime ideal
of R[X]. It is clear that I, [X] C I[X],y,. Let g(X) = b, X" + -+ by € [[X] ;) sO
f(X)g(X) = agby + - -+ + a,b, X" € I[X]. Since bya, € I, we conclude that b, € I, .
Now let i < k such that b, € 1, for every ¢ with 0 < ¢ <i < k; we will show that
by €1, . Consider the term (b, ay+ ba; +---+ bja, + bya,, )X of f(X)g(X)
(observe that some of the b;’s might be zero). Let t = b, jay + - - - + bya;. Since t +
bya;;y € 1, wehave I, =1, , by Lemma 4.14. Since b, € I, for every c with 0 < ¢ <
i <k, we have b, € I, and thus b, € I, , . Hence b, € I, because I,  is a prime
ideal of R, and thus b, € I, . Now suppose that b, ..., b, € I, for some h with
0 < h < m. We show that b, € I, . Consider the term (bya,,; + - - - + by a0) X""!
of f(X)g(X); at once we conclude that b, € I, . By repeating a similar argument
to the one used earlier to show that b, € I, , we have b, € I, . Thus g(X) € I, [X].
ernfe ]I[X] 00 = 1, [X] 1s a prime ideal of R[X], and thus /[X] is a 2-absorbing idezéll
of R|X].

We conclude this section by investigating n-absorbing ideals for the “D + M”
construction. Let 7= K + M be an integral domain, where K is a field which is
a subring of T and M is a nonzero maximal ideal of 7, and let D be a subring
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of K. Then R= D+ M is a subring of T with gf(R) = ¢qf(T). This construction
has proved very useful for constructing examples (cf. [4, 5, 8, 11]). The first lemma
describes the n-absorbing ideals of R which contain M.

Lemma 4.16. Let T = K + M be an integral domain, where K is a field which is a
subring of T and M is a nonzero maximal ideal of T. Let D be a subring of K and
R=D+ M. Let I be an ideal of D. Then I + M is an n-absorbing ideal of R if and
only if I is an n-absorbing ideal of D. Moreover, wgx(I + M) = wp(I).

Proof. This follows directly from Corollary 4.3(b) since (I +M)/M =1 in
R/M = D.
The “moreover” statement is clear. O

To get more complete results, we restrict to the case where 7 = K[[X]] = K +
XK[[X]] for K a field and M = XK[[X]]. In this case, every ideal of R=D+ M =
D + XK[[X]] is comparable to M. The ideals of R which contain M have the form
I + XK[[X]] for I an ideal of D, and the ideals contained in M have the form WX" +
X" K[[X]] for W a D-submodule of K and n a positive integer [4, Theorem 2.1].
Note that M" = X"K[[X]] has w;(M") = wz(M") = n for every positive integer n.

Theorem 4.17. Let D be a subring of a field K and R = D + XK[[X]].

(a) If D is a field, then every proper ideal of R is an n-absorbing ideal of R for some
positive integer n.

(b) If D is a proper subring of K with qf(D) = K, then the nonzero n-absorbing
ideals of R have the form I + XK[[X]], where I is an n-absorbing ideal of D, or
X"K[[X]] for m an integer with 1 < m < n. Moreover, wy(I + XK[[X]]) = w,(])
and ox(X"K[[X]]) = m.

Proof. (a) If D =K, this is clear since then R = K[[X]] is a DVR. So, let D =F
be a proper subfield of K. Then R = F + XK[[X]] is a one-dimensional quasilocal
integral domain with maximal ideal M = XK[[X]]. Each proper nonzero ideal of R
is M-primary and has the form I = WX" + X""'K[[X]] for some nonzero F-subspace
W of K and positive integer n. Then M"™' C I implies that wgz(I) <n+1 by
Theorem 3.1. Thus every proper ideal of R is an n-absorbing ideal of R for some
positive integer n.

(b) Let D C gf(D) = K and J be a nonzero n-absorbing ideal of R. Then J is
comparable to M. If M C J, then J = I 4 XK[[X]] for I an n-absorbing ideal of D
by Lemma 4.16. So we may assume that J € M. Then J = WX" + X" K[[X]] for
W a nonzero D-submodule of K and positive integer m. Suppose that W C K. Then
there are 0 # a, d € D such that a € W, but 5 ¢ W for all positive integers i. Then
d'(5X™) = aX" € J, but no proper subproduct is in J; so J is not an i-absorbing
ideal of R for any positive integer i, i.e., wgz(J) = oo. Thus W = K; so J = X" K[[X]]
is an m-absorbing ideal of R and 1 < m < n.

The “moreover” statement follows from Lemma 4.16 and the comments before
this theorem. O

The next example illustrates the two cases of the previous theorem.
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Example 4.18. (a) Let R = Q + XIR[[X]] € R[[X]]. Then R is a one-dimensional
quasilocal integral domain with non-finitely generated maximal ideal M = XR[[X]],
and R is not a valuation domain [8, Exercises 12-13, pp. 202-203]. Each proper
nonzero ideal of R has the form I = WX" + X"*'IR[[X]] for some nonzero @Q-subspace
W of R and positive integer n. Then M"*! C [ implies that wz(I) <n+ 1. If W = R,
then I = X"IR[[X]] and wg(I) = n; otherwise wg(I) = n+ 1. To see this, let « € R\W
witho > 0,and let § = o Then (BX)™*! € I, but (BX)" = aX" ¢ I. Thus every proper
ideal of R is an n-absorbing ideal of R for some positive integer 7.

(b) Let R=F + XK[[X]] for F a proper subfield of K. Then R is a
one-dimensional quasilocal integral domain with maximal ideal M = XK[[X]].
Moreover, R is never a valuation domain and ring-theoretic properties of R
depend on the field extension K/F. For example, R is Noetherian if and only if
[K : F] < o0, and R is integrally closed if and only if F is algebraically closed in
K [4, Theorem 2.1]. Thus for various choices of fields F C K, we obtain integral
domains R satisfying certain ring-theoretic properties, and all proper ideals of R are
n-absorbing ideals of R for some positive integer n by Theorem 4.17(a).

(c) Let R=Z+ XQ[[X]] C Q[[X]]. Then R is a two-dimensional Bézout
domain which is not a valuation domain with Spec(R) = {0, XQ[[X]]}U{pR | p €
Z prime} [5, Theorem 7 and Corollary 9]. The ideal I = XR = ZX + X*Q[[X]] is
not an n-absorbing ideal of R for any positive integer n; so w,(I) = oco. This follows
since 2”(2%X) = X € I, but no proper subproduct is in /. By Theorem 4.17(b) (or
Theorem 5.7), a nonzero n-absorbing ideal of R has the form I, = p|'--- p{*R =
P pZ 4+ XQ[[X]] for distinet positive primes py,...,p, € Z and positive
integers n, ..., n, with n; +---+n, <n or I, = X"Q[[X]] for m a positive integer
with m < n. Moreover, wg(l}) = n; + -+ + n, and wg(l,) = m.

(d) Let D be a subring of a field K with D C ¢f(D) = F C K. Then the
nonzero ideals of R = D + M contained in M = XK|[[X]] have the form I = WX +
X" K[[X]] for some nonzero D-submodule W of K and positive integer m. If W C
K, then I may or may not be an n-absorbing ideal of R for some positive integer n.
For example, let I, = XR = DX + X?K[[X]] and I, = FX + X?K[[X]]. Then one can
easily verify that wg(1;) = oo and wg(1,) = 2.

5. n-ABSORBING IDEALS IN SPECIFIC RINGS

In this section, we study n-absorbing ideals in several special classes of
commutative rings. If R is a Dedekind domain, then every proper nonzero ideal
of R is a product of maximal ideals of R, and hence is an n-absorbing ideal for
some positive integer n (see Corollary 4.5 for a Krull domain analog). Specifically,
if | =M, ---M, with each M; a maximal ideal of R, then / is an n-absorbing ideal of
R by Theorem 2.9. In fact, the converse is true if R is a Noetherian integral domain.

Theorem 5.1. Let R be a Noetherian integral domain. Then the following statements
are equivalent:

(1) R is a Dedekind domain;
(2) If I is an n-absorbing ideal of R, then I =M, ---M, for maximal ideals
My, ...,M, of Rwith1l <m <n.
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Moreover, if = M, - - - M, for maximal ideals M, ..., M, of a Dedekind domain
R which is not a field, then () = n.

Proof. (1) = (2) This has already been observed above.

(2) = (1) Let M be a maximal ideal of R. Since every ideal between M? and
M is an M-primary ideal of R, and hence a 2-absorbing ideal of R by Theorem 3.1,
the hypothesis in (2) implies that there are no ideals of R properly between M? and
M. Thus R is a Dedekind domain by [8, Theorem 39.2].

The “moreover” statement follows from Lemma 2.8 and Corollary 4.9. d

We next give a similar result for almost Dedekind domains.

Theorem 5.2. Let R be an almost Dedekind domain. Then a nonzero ideal I of R is
an n-absorbing ideal of R if and only if I = M, --- M,, for maximal ideals M, ..., M,
of R with 1 < m < n. Moreover, o(M, ---M,,) = m.

Proof. Let I be a nonzero n-absorbing ideal of R. Then there are only a finite
number of prime (maximal) ideals of R minimal over I, say Py, ..., P, with k < n,
by Theorem 2.5. For each 1 <i <k, we have I, = (P p, for some positive integer
n,; since R, is a DVR (note that n; < n by Theorem 4.1). Let J = P{" --- P,*. Then
I,, = J,, for each maximal ideal M of R; so I = J is a product of maximal ideals of
R. The converse holds by Theorem 2.9.

The “moreover” statement follows as in Theorem 5.1. O

We have seen that a ring may have proper ideals that are not n-absorbing
ideals for any positive integer n. However, we next show that in a Noetherian ring,
every proper ideal is an n-absorbing ideal for some positive integer n.

Theorem 5.3. Let R be a Noetherian ring. Then every proper ideal of R is an n-
absorbing ideal of R for some positive integer n.

Proof. Let J be a P-primary ideal of R for some prime ideal P of R. Then P" C J
for some positive integer m since R is Noetherian. Thus J is an m-absorbing ideal
of R by Theorem 3.1. Let I be a proper ideal of R. Then [/ is a finite intersection
of primary ideals of R since R is Noetherian [10, Theorem 2.7], and hence [ is an
n-absorbing ideal of R for some positive integer n by Theorem 2.1(c). O

We next determine the n-absorbing ideals in a valuation domain. We will need
the following lemma (cf. Theorem 6.2).

Lemma 5.4. Let R be a Bézout ring, I an n-absorbing ideal of R, and P a prime ideal
of R such that Rad(I) = P. Then P" C I. In particular, this holds if R is a valuation
domain.

Proof. Let x,,...,x, € P. Since R is a Bézout ring, we have (x,, ..., x,) = xR for
some x € P, and thus x, - - - x, = x"y for some y € R. Since x" € I by Theorem 2.1(e),
we have x, ---x, = x"y € I, and hence P" C I.

The “in particular” statement is clear. O
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The key fact for our characterization of n-absorbing ideals in a valuation
domain R is that if the prime ideal P of R is not idempotent, then every P-primary
ideal of R has the form P™ for some positive integer m [8, Theorem 17.3(b)]. Since
PQ = P for prime ideals P C Q of R, the following theorem may be restated as
follows: an ideal I of a valuation domain R is an n-absorbing ideal of R for some
positive integer n if and only if I is a product of prime ideals of R.

Theorem 5.5. Let R be a valuation domain and n a positive integer. Then the
following statements are equivalent for an ideal I of R:

(1) I is an n-absorbing ideal of R;
(2) I is a P-primary ideal of R for some prime ideal P of R and P" C I,
(3) I = P" for some prime ideal P(= Rad(l)) of R and integer m with 1 < m < n.

Moreover, o(P") = n for P a nonidempotent prime ideal of R.

Proof. (1) = (2) Let I be an n-absorbing ideal of R. Then P = Rad(l) is a
divided prime ideal of R by [8, Theorem 17.1(2)], and hence [ is a P-primary ideal
of R by Theorem 3.2. We have P" C I by Lemma 5.4.

(2) = (3) This follows from [8, Theorem 17.3(b)].

(3) = (1) We may assume that I is nonzero. By Theorem 3.3, I = P™ is an
m-absorbing ideal of R. Thus I is also an n-absorbing ideal of R by Theorem 2.1(b).

The “moreover” statement follows from Theorem 3.3 since P"*! C P" for every
positive integer n. |

Our next example shows that the “Noetherian” hypothesis is needed in
Theorems 5.1 and 5.3. In each case, the specific details follow directly from
Theorem 5.5 and well-known results about the value group of a valuation domain

(cf. [8]).

Example 5.6. (a) Let R be a one-dimensional valuation domain with maximal
ideal M. Thus all nonzero proper ideals of R are M-primary. If M is principal, then
R is a DVR, and thus every proper ideal of R is an n-absorbing ideal for some
positive integer n. In this case, o(M") = n and w(0) = 1. If M is not principal, then
M = M?, and hence 0 and M are the only n-absorbing ideals of R for any positive
integer n. In this case, (M) = w(0) =1 and w(l) = oo for any ideal I of R with
0 C I € M. Note that I is M-primary (cf. Theorem 3.1).

(b) Let R be a two-dimensional valuation domain with prime ideals 0 C P C
M and value group G. If G = Z @ Z (all direct sums have the lexicographic order),
then P? # P and M? # M; so 0, P, and M* with 1 < k < n are the only n-absorbing
ideals of R for any positive integer n (i.e., o(M") = w(P") = n and w(0) =1). If
G=Qa, then P>=P and M?> =M; so 0,P and M are the only n-absorbing
ideals of R for any positive integer n (i.e., (M) = w(P) =w(0)=1).IfG=Z ¢ Q,
then M? = M and P> # P; so 0, P* with 1 < k < n, and M are the only n-absorbing
ideals of R for any positive integer n (i.e., (M) = w(0) =1 and w(P") = n). If
G=Q®Z, then P>=P and M?># M; so 0, P, and M* with 1 <k <n are the
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only n-absorbing ideals of R for any positive integer n (i.e., ®(P) = w(0) = 1 and
w(M") = n).

(¢) For each positive integer m or oo, there is a valuation domain R with
dim(R) = m such that the prime ideals of R are the only n-absorbing ideals of R for
any positive integer n (let R be a valuation domain with value group G = @}, Q).

These results can also be extended to Priifer domains. Recall that
incomparable prime ideals of a Priifer domain R are comaximal since R is locally a
valuation domain. Also, a prime ideal P of a Priifer domain R is idempotent if and
only if P, is idempotent in R,.

Theorem 5.7. Let R be a Priifer domain. Then an ideal I of R is an n-absorbing
ideal of R for some positive integer n if and only if I is a product of prime ideals of R.
Moreover, if Py, ..., P, are incomparable prime ideals of R and n,, . .., n, are positive

n

integers with n; = 1 if P; is idempotent, then o(P," --- P*) = n; + -+ + n,.

Proof. Let I be a nonzero n-absorbing ideal of R, and let P,, ..., P, with k < n be
the minimal prime ideals of 7 (Theorem 2.5). Then the P,’s are pairwise comaximal
since R is a Priifer domain. By Theorems 4.1 and 5.5, we have I, = (P;"), for some
positive integer n,. Let J = P|'---P/*. Let M be a maximal ideal of R; we may
assume that P; is the only minimal prime ideal of / contained in M. As above, [,, =
(Pf ")y for some positive integer k;; and we can assume that k; = n; since (/) p, = I,
Thus 7,, = J,, for every maximal ideal M of R, and hence I = J. So [ is a product
of prime ideals of R.

Conversely, suppose that I is a product of prime ideals of R. Note that if
P C Q are prime ideals of R, then PQ = P (since this holds locally). Thus we
may assume that / = PI” . ~P,';*, where Py, ..., P, are comaximal prime ideals of R
and the n;’s are positive integers with n = n, + --- + n,. Each P is a P,-primary
ideal of R by [8, Lemma 23.2(b)]. Thus each P;" is an n;-absorbing ideal of R by
Theorem 3.1, and hence [ is an n-absorbing ideal of R by Theorem 2.1(c) since I =
Pl P =P N---NPY (or use Corollary 4.9).

The “moreover” statement follows from Theorem 3.1 and Corollary 4.9. O

We have seen that every proper ideal of either a Noetherian ring or certain
valuation domains is an n-absorbing ideal for some positive integer n. For any
ring R, we define Q(R) = {wg(I) | I is a proper ideal of R}. Then {1} € Q(R) C
IN U {o0}. The following example and theorems give the possible values for Q(R) in
several classes of rings.

Example 5.8. (a) Let n=p|'---p,* for distinct positive primes p,...,p, € Z
and positive integers n,, ..., n,. Then Q(Z,) = {1, ..., m}, where m = n, +--- + n,,
by Theorem 4.7. In particular, Q(Z,.) = {1, ..., n} for any positive prime p € Z and
positive integer n.

(b) Let R =Z (or any PID, not a field); then Q(R) = N by Theorem 2.1(d).

(c) LetR=TIZ,Z,, 1, and I, be as in Example 2.3. Then w(I,) = n for each
n € N and w(l) = oo; s0 Q(R) = N U {oc0}.
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(d) Let R be a zero-dimensional quasilocal ring with maximal ideal M
such that M™' c M" for every positive integer n (for example, let K be a field
and R = K[{X, | n € N}]/({X"*" | n € N})). Then N € Q(R) by Lemma 2.8 (cf.
Remark 6.4(b)).

(e) Let T=Q+XR[[X]], M=XR[[X]], and n be a positive integer.
Then Q(7) =N and R=T/M" has Q(R) ={1,...,n} by Example 4.18(a) and
Corollary 4.3(b). Note that T is not Noetherian and R is not Artinian for n > 2.

Let n be a fixed positive integer. Then it is easy to give necessary conditions
for every proper ideal of a ring R to be an n-absorbing of R, ie, Q(R) C
{1,...,n}. Example 5.8(d) shows that the converse of the following theorem is
false: a quasilocal ring R with dim(R) = 0 may have Q(R) infinite. For a converse,
see Theorem 6.5. Also, we may have Q(R) finite and dim(R) > 0 if oo € Q(R)
(Example 5.6(a)).

Theorem 5.9. Let R be a ring and n a positive integer such that every proper ideal of
R is an n-absorbing ideal of R. Then dim(R) = 0 and R has at most n maximal ideals.

Proof. Suppose that dim(R) > 1; so R has prime ideals P C Q. Choose x € Q\P,
and let 7 = x"*'R. Then x" e I since I is an n-absorbing ideal of R, and thus x" =
x"*y for some y € R. Hence x"(1 —xy) =0 € P, and thus 1 —xy € P C Q. Then
x € Q gives 1 € Q, a contradiction, and hence dim(R) = 0. That R has at most n
maximal ideals follows from Theorem 2.6. O

Lemma 5.10. Let M be a finitely generated maximal ideal of a ring R. If M" =
M"™! for some positive integer n, then ht(M) = 0. In particular, if R is Noetherian with
dim(R) > 1, then there is a maximal ideal M of R with M"*' C M" for every positive
integer n.

Proof. Suppose that ht(M) > 1. Then P C M for some prime ideal P of R. In R,
we have P), C M,, and M, M}, = M};; so M}, = 0 by Nakayama’s Lemma. But then
M}, € Py so Py, = M, a contradiction. Thus ht(M) = 0.

The “in particular” statement is clear. |

Theorem 5.11. Ler R, R, and R, be rings.

(a) If |Max(R)| = n < oo, then {1,...,n} € Q(R). If Max(R) is infinite, then N C
Q(R).

(b) Let I be a proper ideal of R. Then Q(R/I) € Q(R).

(© Q(R) € Q(R[X]).

(d) QR x Ry) = Q(R)) + Q(R,).

(e) Let M be an R-module. Then Q(R) € Q(R(+)M).

(f) Let T = K + M be an integral domain, where K is a field which is a subring of T
and M is a nonzero maximal ideal of T, and let D be a subring of K. Then Q (D) C
Q(D + M).

(g) R is a field if and only if Q(R) = {1}.

(h) If R is an Artinian ring, then Q(R) = {1, ..., n} for some n € N.
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(1) If R is a Noetherian ring with dim(R) > 1, then Q(R) = IN.

(j) Let R be a valuation domain (not a field). Then Q(R) = N if R is a DVR. If R is
not a DVR, then Q(R) = {1, oo} if all nonzero prime ideals of R are idempotent,
and Q(R) = N U {oo} if R has a nonidempotent nonzero prime ideal.

Proof. (a) This follows from Theorem 2.6.
(b) This follows from Corollary 4.3(b).
(c) This follows from Theorem 4.13.
(d) This follows from Theorem 4.7.

(e) This follows from our earlier observation just before Theorem 4.10 that
Oy (I(+)M) = wg(I) for every ideal I of R.

(f) This follows from Lemma 4.16.

(g) This is clear since every proper ideal of a ring R is a prime ideal if and
only if R is a field.

(h) If R is local, this follows from Theorem 3.1. The general case then follows
from Corollary 4.8 since every Artinian ring is the direct product of finitely many
local Artinian rings.

(i) We have Q(R) € N by Theorem 5.3. Lemmas 2.8 and 5.10 give N C
Q(R). Thus Q(R) = N.

() This follows from Theorem 5.5. O

The inclusions in the above theorem may be strict. This is clear for (a), (b), (e),
and (f). For (c), let R be any Artinian ring. Then Q(R) is finite by (h), but Q(R[X]) =
N by (i) since R[X] is Noetherian with dim(R[X]) = 1. However, if R is Noetherian
with dim(R) > 1, then Q(R) = Q(R[X]) = N by (i) since R[X] is Noetherian with
dim(R[X]) > 2. Example 5.8(¢) shows that the converse of (h) is false. Also, in
(h), for every positive integer n, there is a local Artinian ring R, with Q(R,) =
{1,...,n}; just let R, = Z,, for p prime (cf. Example 5.8(a)).

We end this section with two questions. If n € Q(R) for some positive integer
n, then is m € Q(R) for every integer m with 1 <m < n? Is Q(Rg) € Q(R) for S a
multiplicatively closed subset of R?

6. STRONGLY n-ABSORBING IDEALS

In this final section, we introduce and study strongly n-absorbing ideals. It
is well known that a proper ideal I of a ring R is a prime ideal of R if and only
if whenever 1,1, C I for ideals I,, I, of R, then either [, €7 or I, C 1. Let n be a
positive integer. We say that a proper ideal I of a ring R is a strongly n-absorbing
ideal if whenever [, ---1,,, C I forideals I, ..., I,,, of R, then the product of some
n of the I;’s is in I. Thus a strongly 1-absorbing ideal is just a prime ideal, and
the intersection of n prime ideals is a strongly n-absorbing ideal. It is clear that a
strongly n-absorbing ideal of R is also an n-absorbing ideal of R, and in [3, Theorem
2.13], it was shown that these two concepts agree when n = 2. We conjecture that
these two concepts agree for all positive integers n. In Corollary 6.9, we show that
they agree for Priifer domains.



18:15 20 June 2011

[Badawi, Ayman] At:

Downloaded By:

ON n-ABSORBING IDEALS OF COMMUTATIVE RINGS 1669

Let I be a proper ideal of a ring R. If I is a strongly n-absorbing
ideal of R for some positive integer n, we define w}(l) = min{n |
I is a strongly n-absorbing ideal of R}; otherwise, set w}(I) = oo (we will just write
o*(I) when the context is clear). Also, set wj(R) =0; so wi(I) € NU{0, oo},
wx(I) =1 if and only if I is a prime ideal of R, and wg(I) < w}(I) for every ideal I
of R. Define Q*(R) = {wj(I) | I is a proper ideal of R}; so {1} € Q(R) € N U {cc}.

The interested reader may formulate results for w* and O* analogous to those
for  and Q. We will use the analog of Theorem 2.1(c) several times; namely,
o*(,Nn---NI,) <o)+ -+ w*(,) forideals I, ..., I, of R. However, we next
conjecture that w, = w}, and thus also Q(R) = Q*(R), for any ring R.

Conjecture 1. Let n be a positive integer. Then a proper ideal I of a ring R is
a strongly n-absorbing ideal of R if and only [ is an n-absorbing ideal of R (i.e.,
wg(I) = wi(I) for every ideal I of R, and thus Q(R) = Q*(R)).

Conjecture 2. Let n be a positive integer, and let / be an n-absorbing ideal of a
ring R. Then Rad(I)" C I.

We first show that Conjecture 1 implies Conjecture 2.

Theorem 6.1. Let n be a positive integer and I a strongly n-absorbing ideal of a ring
R. Then Rad(I)" C I. In particular, Conjecture 1 implies Conjecture 2.

Proof. Let x,,...,x, € Rad(I), and let J/ = (xy, ..., x,) € Rad(I). Then x! € I for
each 1 <k <n by Theorem 2.1(e), and thus J* CI. Hence J" C I since I is a
strongly n-absorbing ideal of R, and thus Rad(I)" C I.

The “in particular” statement is clear. |

We next give some consequences of these two conjectures. The first theorem
extends Theorem 2.14 and holds for n-absorbing ideals if Conjecture 1 holds.

Theorem 6.2. Let n be a positive integer and I a strongly n-absorbing ideal of a ring
R such that I has exactly m(< n) minimal prime ideals P, ..., P,. Then P;" --- P'n C [
for positive integers n, ..., n, withn=n, +---+ n,,. In particular, if Rad(I) = P is
a prime ideal of R, then P" C I.

Proof. Note that m <n by Theorem 2.5. Let J = Rad(I) =P, N---NP,. Then
P---P,CPN---NP,=J;s0 (P---P,)" <J"CI by Theorem 6.1, and thus
Pp---P" C [. Since [ is a strongly n-absorbing ideal of R, we have P! ---P'n C [

for nonnegative integers n,, ..., n, with n=n, +---+n,,. Since P/ --- P C ] C
P; for each 1 <i < m, we must have each n;, > 1.
The “in particular” statement is clear. d

Theorem 6.3. Let P be a prime ideal of a ring R, n a positive integer, and suppose
that Conjecture 2 holds.

(a) If P" is a P-primary ideal of R and P" C P""!, then w(P") = n.
(b) If P is a maximal ideal of R and P" C P""', then w(P") = n.
(c) Let I be a P-primary ideal of a ring R. If P* C I and P"~' ¢ I, then w(I) = n.
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Proof. (a) We have w(P") < n by Theorem 3.1. If o(P") < n — 1, then P"~! C P"
by Conjecture 2, a contradiction.

(b) If P is a maximal ideal of R, then P" is P-primary.
(¢) The proof is similar to that of (a). O

Remark 6.4. (a) Note that Theorem 6.3 improves the condition for w(P") =
n from P"' c P" to P* C P*! in the “moreover” statements of Lemma 2.8,
Theorems 3.1, and 3.3.

(b) Let M be the maximal ideal of a quasilocal ring R with dim(R) = 0 such
that M"*! C M" for every positive integer n. If Conjecture 2 holds, then wg(0) = .
(If wx(0) =n < oo, then M" = 0 by Conjecture 2, a contradiction.)

The next theorem gives a converse to Theorem 5.9. Note that if Conjecture 1
holds, then the hypothesis that 0 is a strongly n-absorbing ideal of R may be deleted.

Theorem 6.5. Let n be a positive integer and R a ring such that 0 is a strongly n-
absorbing ideal of R. Then every proper ideal of R is an n-absorbing ideal of R if and
only if R is isomorphic to R, x --- X R, where 1 < m < n, each R, is a quasilocal

ring with maximal ideal M,, and there are positive integers n,, ..., n,, such that n =
ny+---+n, and M{" =0 for each 1 <i < m.

Proof. Suppose that R is isomorphic to T = R, x --- x R,,, where | < m < n, each
R; is a quasilocal ring with maximal ideal M;, and there are positive integers
ny,...,n, such that n=n,+---+n, and Ml»"" =0 for each 1 <i < m. First,
observe that every proper ideal of each R; is an M;-primary ideal of R;, and if
I; is a proper ideal of R;, then wg (/) <n; by Theorem 3.1 since M =0. Let
Iy,...,1, be ideals of Ry, ..., R, respectively. Then w;(l; x --- x I,,) = wg (I;) +
<+ awg (I,) <n +---+n, =nby Corollary 4.8. Thus every proper ideal of T is
an n-absorbing ideal of T, and hence the same holds for R = T by Theorem 4.2(b).

Conversely, suppose that every proper ideal of R is an n-absorbing ideal
of R. Then dim(R) =0 and R has m < n maximal ideals by Theorem 5.9. Let
M,, ..., M, be the maximal ideals of R. Since 0 is a strongly n-absorbing ideal of
R, we have M|" .- M" =0 for positive integers n,,...,n, with n=n, +---+n,,
by Theorem 6.2. Thus R is isomorphic to R/M;"' x ---x R/M" by the Chinese
Remainder Theorem, and this product satisfies the desired properties. |

Our final theorem gives a case where the two concepts of n-absorbing
and strongly n-absorbing ideals are equivalent. Note that the hypothesis in
Theorem 6.6(1) that I is an n-absorbing ideal of R is redundant by Theorem 3.1. As
corollaries, we have that the product of » maximal ideals is a strongly n-absorbing
ideal (cf. Theorem 2.9), that every proper ideal of a Noetherian ring is a strongly
n-absorbing ideal for some positive integer n (cf. Theorem 5.3), and that Conjecture
1 holds for the class of Priifer domains (Corollary 6.9).
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Theorem 6.6. Let [ be a P-primary ideal of a ring R and n a positive integer. Then
the following statements are equivalent:

(1) I is an n-absorbing ideal of R and P" C I,
(2) I is a strongly n-absorbing ideal of R.

In particular, if P" is P-primary, then P" is a strongly n-absorbing ideal of R.

Proof. (1) = (2) Suppose that [,---1,., <[ for ideals /,,...,I,,, of R, but no
product of n of the /;’s is contained in /. Then each /; is contained in P since / is
P-primary, and thus every product of n of the /;’s is contained in / because P" C I.
This is a contradiction; so there is a product of n of the /;’s that is contained in /.

(2) = (1) This is clear by Theorem 6.2.
The “in particular” statement is clear by Theorem 3.1 and (1) = (2) above.
O

Corollary 6.7. Let M,, ..., M, be maximal ideals of a ring R. Then [ = M, --- M, is
a strongly n-absorbing ideal of R.

Proof. The proof is essentially the same as the proof of Theorem 2.9, but
with Theorem 6.6 replacing an appeal to Lemma 2.8 and using the analog of
Theorem 2.1(c) for strongly absorbing ideals. |

Corollary 6.8. Let R be a Noetherian ring. Then every proper ideal of R is a strongly
n-absorbing ideal of R for some positive integer n.

Proof. The proof is essentially the same as the proof of Theorem 5.3, but
with Theorem 6.6 replacing an appeal to Theorem 3.1 and using the analog of
Theorem 2.1(c) for strongly absorbing ideals. d

Corollary 6.9. Let R be a Priifer domain and n a positive integer. Then an ideal 1
of R is a strongly n-absorbing ideal of R if and only if I is an n-absorbing ideal of R.
Moreover, o(I) = w*(I).

Proof. We show that w(I) = w*(I) for I a nonzero, proper ideal of R with w(I) =
n. By (the proof of) Theorem 5.7, we may assume that I = P{'--- P;*, where the
P;’s are comaximal prime ideals of R, the n,’s are positive integers with n;, =1 if
P, is idempotent, and n = n; + - -- + n;. Thus w(l) < w*(I) = w*(P{' N---NP*) <
o*(P{")+ -+ o (P*) <n + -+ n,=n= o) by the analog of Theorem 2.1(c)
for strongly absorbing ideals and Theorem 6.6 (recall that each P} is a primary ideal
of R by [8, Lemma 23.2(b)]). Hence w(I) = o*(I). O
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